1. W. Wang and H. Yuan, "A Tidal Level Prediction Approach Based on BP Neural Network and Cubic BSpline Curve with Knot Insertion Algorithm," Mathematical Problems in Engineering, vol. 2018, 2018. [ DOI:10.1155/2018/9835079] 2. D. Pugh and P. Woodworth, Sealevel science: understanding tides, surges, tsunamis and mean sealevel changes. Cambridge University Press, 2014. [ DOI:10.1017/CBO9781139235778] 3. M. Guan et al., "A method of establishing an instantaneous water level model for tide correction," Ocean Engineering, vol. 171, pp. 324331, 2019. [ DOI:10.1016/j.oceaneng.2018.11.016] 4. S. Cai, L. Liu, and G. Wang, "Shortterm tidal level prediction using normal timefrequency transform," Ocean Engineering, vol. 156, pp. 489499, 2018. [ DOI:10.1016/j.oceaneng.2018.03.021] 5. G. W. Platzman, "Ocean tides and related waves," Mathematical problems in the geophysical sciences, vol. 14, no. Part 2, pp. 239291, 1971. 6. B. Hong et al., "Potential physical impacts of sealevel rise on the Pearl River Estuary, China," Journal of Marine Systems, vol. 201, p. 103245, 2020. [ DOI:10.1016/j.jmarsys.2019.103245] 7. Y. H. Song, Q. X. Xuan, and A. T. Johns, "Comparison studies of five neural network based fault classifiers for complex transmission lines," Electric power systems research, vol. 43, no. 2, pp. 125132, 1997. [ DOI:10.1016/S03787796(97)011681] 8. B. B. Parker, "Tidal analysis and prediction.," 2007. 9. E. A. Fanjul, B. P. Gómez, and I. R. SánchezArévalo, "A description of the tides in the Eastern North Atlantic," Progress in Oceanography, vol. 40, no. 1, pp. 217244, 1997. [ DOI:10.1016/S00796611(98)000032] 10. T.L. Lee, "Backpropagation neural network for longterm tidal predictions," Ocean Engineering, vol. 31, no. 2, pp. 225238, 2004. [ DOI:10.1016/S00298018(03)00115X] 11. T.L. Lee, O. Makarynskyy, and C.C. Shao, "A combined harmonic analysisartificial neural network methodology for tidal predictions," Journal of Coastal Research, vol. 23, no. 3 (233), pp. 764770, 2007. [ DOI:10.2112/050492.1] 12. O. Okwuashi and D. N. Olayinka, "Tide modelling using the Kalman filter," Journal of Spatial Science, vol. 62, no. 2, pp. 353365, 2017. [ DOI:10.1080/14498596.2016.1245162] 13. O. Okwuashi, C. Ndehedehe, and H. Attai, "Tide modeling using partial least squares regression," Ocean Dynamics, vol. 70, no. 8, pp. 10891101, 2020. [ DOI:10.1007/s10236020013851] 14. G. Li, Y. Hao, and Y. Zhao, "Research of neural network to tidal prediction," in 2009 International Joint Conference on Computational Sciences and Optimization, 2009, vol. 2, pp. 282284. [ DOI:10.1109/CSO.2009.347] 15. F. A. Madah, "The amplitudes and phases of tidal constituents from Harmonic Analysis at two stations in the Gulf of Aden," Earth Systems and Environment, vol. 4, no. 2, pp. 321328, 2020. [ DOI:10.1007/s4174802000152y] 16. R. O. Strobl and F. Forte, "Artificial neural network exploration of the influential factors in drainage network derivation," Hydrological Processes: An International Journal, vol. 21, no. 22, pp. 29652978, 2007. [ DOI:10.1002/hyp.6506] 17. R. Özçelik, M. J. Diamantopoulou, J. R. Brooks, and H. V Wiant Jr, "Estimating tree bole volume using artificial neural network models for four species in Turkey," Journal of environmental management, vol. 91, no. 3, pp. 742753, 2010. [ DOI:10.1016/j.jenvman.2009.10.002] 18. J. A. Anderson, An introduction to neural networks. MIT press, 1995. [ DOI:10.7551/mitpress/3905.001.0001] 19. A. M. Salim, G. S. Dwarakish, K. V Liju, J. Thomas, G. Devi, and R. Rajeesh, "Weekly prediction of tides using neural networks," Procedia Engineering, vol. 116, no. 1, pp. 678682, 2015. [ DOI:10.1016/j.proeng.2015.08.351] 20. B. L. Meena and J. D. Agrawal, "Tidal level forecasting using ANN," Procedia Engineering, vol. 116, pp. 607614, 2015. [ DOI:10.1016/j.proeng.2015.08.332] 21. L. Pashova and S. Popova, "Daily sea level forecast at tide gauge Burgas, Bulgaria using artificial neural networks," Journal of Sea Research, vol. 66, no. 2, pp. 154161, 2011. [ DOI:10.1016/j.seares.2011.05.012] 22. M. Janati, M. Kolahdoozan, and H. Imanian, "Artificial Neural Network Modeling for the Management of Oil Slick Transport in the Marine Environments," Pollution, vol. 6, no. 2, pp. 399415, 2020. 23. S.W. Kim, A. Lee, and J. Mun, "A Surrogate Modeling for Storm Surge Prediction Using an Artificial Neural Network," Journal of Coastal Research, no. 85, pp. 866870, 2018. [ DOI:10.2112/SI85174.1] 24. W. J. Palm, Introduction to MATLAB 7 for Engineers, vol. 7. McGrawHill New York, 2005. 25. A. J. Adeloye and A. De Munari, "Artificial neural network based generalized storageyieldreliability models using the LevenbergMarquardt algorithm," Journal of Hydrology, vol. 326, no. 14, pp. 215230, 2006. [ DOI:10.1016/j.jhydrol.2005.10.033] 26. M. T. Hagan and M. B. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE transactions on Neural Networks, vol. 5, no. 6, pp. 989993, 1994. [ DOI:10.1109/72.329697] 27. R. Battiti, "Firstand secondorder methods for learning: between steepest descent and Newton's method," Neural computation, vol. 4, no. 2, pp. 141166, 1992. [ DOI:10.1162/neco.1992.4.2.141] 28. Z.G. Zhang, J.C. Yin, and C. Liu, "A modular realtime tidal prediction model based on GreyGMDH neural network," Applied Artificial Intelligence, vol. 32, no. 2, pp. 165185, 2018. [ DOI:10.1080/08839514.2018.1451220] 29. M. H. Beale, M. T. Hagan, and H. B. Demuth, "Neural Network ToolboxTM, User's Guide, MATLAB®R2015a, The MathWorks," Inc., Natick, MA, USA, vol. 410, 2015. 30. S. E. Vt and Y. C. Shin, "Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems," IEEE transactions on neural networks, vol. 5, no. 4, pp. 594603, 1994. [ DOI:10.1109/72.298229] 31. J. Yin, Z. Zou, and F. Xu, "Sequential learning radial basis function network for realtime tidal level predictions," Ocean engineering, vol. 57, pp. 4955, 2013. [ DOI:10.1016/j.oceaneng.2012.08.012] 32. S. Ardani and M. Soltanpour, "Modelling of sediment transport in Beris fishery port," Civil Engineering Infrastructures Journal, vol. 48, no. 1, pp. 6982, 2015. 33. D. Ghaderi and M. Rahbani, "Detecting shoreline change employing remote sensing images (Case study: Beris Porteast of Chabahar, Iran)," International Journal of Coastal and Offshore Engineering, vol. 3, pp. 18, 2020. 34. M. Sayehbani and D. Ghaderi, "Numerical Modeling of Wave and Current Patterns of Beris Port in East of ChabaharIran," International Journal of Coastal and Offshore Engineering, vol. 3, no. 1, pp. 2129, 2019. 35. C. Amante and B. W. Eakins, "ETOPO1 arcminute global relief model: procedures, data sources and analysis," 2009. 36. United States Geological Survey, "EarthExplorer," 2020. https://earthexplorer.usgs.gov/ (accessed Aug. 02, 2020). 37. A. Zhang, J. Yin, J. Hu, and C. Yu, "Modular tidal level shortterm forecasting based on BP neural networks," in Proceedings of the 33rd Chinese Control Conference, 2014, pp. 50375042. [ DOI:10.1109/ChiCC.2014.6895796] 38. M. G. Foreman, "G, 1977: Manual for tidal heights analysis and prediction," Pac. Mar. Sci. Rep, vol. 77, no. 10, 1977. 39. G. Dietrich and K. Kalle, "General oceanography; an introduction," 1957. 40. M. Mahmoudof and M. Bagheri, "Determination of Compound and Overtide Constituents near the Eastern Iranian Coast of Makran," Journal of Oceanography, vol. 10, no. 37, pp. 3341, 2019, doi: 10.29252/joc.2019.10.12162. [ DOI:10.29252/JOC.2019.10.12162] 41. K. Hornik, M. Stinchcombe, H. White, and others, "Multilayer feedforward networks are universal approximators.," Neural networks, vol. 2, no. 5, pp. 359366, 1989. [ DOI:10.1016/08936080(89)900208] 42. E. Sertel, H. K. Cigizoglu, and D. U. Sanli, "Estimating daily mean sea level heights using artificial neural networks," Journal of Coastal Research, vol. 24, no. 3 (243), pp. 727734, 2008. [ DOI:10.2112/06742.1]
