Volume 4, Issue 2 (Summer 2020)                   ijcoe 2020, 4(2): 51-64 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghaderi D, Rahbani M. Shoreline change analysis along the coast of Bandar Abbas city, Iran using remote sensing images. ijcoe. 2020; 4 (2) :51-64
URL: http://ijcoe.org/article-1-214-en.html
1- University of Hormozgan
Abstract:   (266 Views)
Coastal cities are among the most important and sensitive regions in the world. They are constantly affected by marine and coastal processes such as waves, currents, and other geological-physical parameters such as sedimentation and deposition. These factors constantly change the shoreline. Thus, evaluation and management at coastal area are very important. In this study, the rate of shoreline changes in the coastal area of Bandar Abbas, south of Iran, was investigated using remote sensing technique and DSAS tools. Landsat 8, 7 and, 5 satellite and Sentinel-2A satellite images were used to detect the rate of changes. Images from the years 1990 to 2020 were selected with 5-year time-interval. Using the NSM, SCE, EPR, and LRR statistical indexes of the DSAS tool, erosion and accretion rates were calculated in about 50 km of shoreline length. According to the EPR index Nakhl e Nakhoda jetty and Shoor River estuary show the maximum and minimum rate of changes, with amount of +31.07 m/yr and +4.83 m/yr, respectively. The average rate of changes was calculated as +12.34 m/yr. We recognized this part of the shoreline as the most sensitive area and suggested that any further development in this area should be undertaken obsessively. Shoreline of urban area of Bandar Abbas generally shows positive rate of change less than +5 m/yr, with the average rate of +2.35 m/yr, which suggests development in this area is in slow pace. In general, only 4% of the shoreline of is detected with high accretion (20.5 to 31.5 m/year) and about 53% is recognized as low accretion (0.5 to 10.5 m/year).
Full-Text [PDF 7139 kb]   (94 Downloads)    
Type of Study: Research | Subject: Coastal Engineering
Received: 2020/11/6 | Accepted: 2020/12/23 | ePublished: 2020/12/28

References
1. K. S. S. Parthasarathy and P. C. Deka, "Remote sensing and GIS application in assessment of coastal vulnerability and shoreline changes: a review," ISH Journal of Hydraulic Engineering, vol. 00, no. 00, pp. 1-13, Apr. 2019, doi: 10.1080/09715010.2019.1603086. [DOI:10.1080/09715010.2019.1603086]
2. Tran Thi Van; Trinh Thi Binh, "Shoreline Change Detection to Serve Sustainable Management of Coastal Zone in Cuu Long Estuaries," International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences. pp. 1-6, 2008.
3. E. C. F. Bird and O. S. R. Ongkosongo, "Environmental changes on the coasts of Indonesia ( resource management)." 1981.
4. M. R. Muskananfola, S. Febrianto, and others, "Spatio-temporal analysis of shoreline change along the coast of Sayung Demak, Indonesia using Digital Shoreline Analysis System," Regional Studies in Marine Science, vol. 34, p. 101060, 2020. [DOI:10.1016/j.rsma.2020.101060]
5. C. B. Boye, K. A. Addo, G. Wiafe, and K. Dzigbodi-Adjimah, "Spatio-temporal analyses of shoreline change in the western region of Ghana," Journal of Coastal Conservation, vol. 22, no. 4, pp. 769-776, 2018. [DOI:10.1007/s11852-018-0607-z]
6. H. W. Blodget, P. T. Taylor, and J. H. Roark, "Shoreline changes along the Rosetta-Nile Promontory: Monitoring with satellite observations," Marine Geology, vol. 99, no. 1-2, pp. 67-77, 1991. [DOI:10.1016/0025-3227(91)90083-G]
7. A. T. K. Do, S. de Vries, and M. J. F. Stive, "The estimation and evaluation of shoreline locations, shoreline-change rates, and coastal volume changes derived from Landsat images," Journal of Coastal Research, vol. 35, no. 1, pp. 56-71, 2019. [DOI:10.2112/JCOASTRES-D-18-00021.1]
8. G. Mitri, M. Nader, M. Abou Dagher, and K. Gebrael, "Investigating the performance of sentinel-2A and Landsat 8 imagery in mapping shoreline changes," Journal of Coastal Conservation, vol. 24, no. 3, pp. 1-9, 2020. [DOI:10.1007/s11852-020-00758-4]
9. A. Novellino et al., "Mapping recent shoreline changes spanning the lateral collapse of Anak Krakatau Volcano, Indonesia," Applied Sciences, vol. 10, no. 2, p. 536, 2020. [DOI:10.3390/app10020536]
10. E. Tamassoki, H. Amiri, and Z. Soleymani, "Monitoring of shoreline changes using remote sensing (case study: coastal city of Bandar Abbas)," in IOP conference series: earth and environmental science, 2014, vol. 20, no. 1, p. 12023. [DOI:10.1088/1755-1315/20/1/012023]
11. D. Ghaderi and M. Rahbani, "Detecting shoreline change employing remote sensing images (Case study: Beris Port-east of Chabahar, Iran)," International Journal of Coastal and Offshore Engineering, vol. 3, pp. 1-8, 2020.
12. V. Hadipour, F. Vafaie, and N. Kerle, "An indicator-based approach to assess social vulnerability of coastal areas to sea-level rise and flooding: A case study of Bandar Abbas city, Iran," Ocean & coastal management, vol. 188, p. 105077, 2020. [DOI:10.1016/j.ocecoaman.2019.105077]
13. M. Dadras, H. Z. M. Shafri, N. Ahmad, B. Pradhan, and S. Safarpour, "Six decades of urban growth using remote sensing and GIS in the city of Bandar Abbas, Iran," in IOP Conference Series: Earth and Environmental Science, 2014, vol. 20, no. 1, p. 12007. [DOI:10.1088/1755-1315/20/1/012007]
14. I. S. Yearbook, "Statistical center of Iran," Tehran, Iran, 2017. https://www.amar.org.ir/english/Population-and-Housing-Censuses/Census-2016-Detailed-Results (accessed Aug. 01, 2020).
15. F. Allahyari, A. Behbahaninia, H. Rahami, M. Farahani, and S. Khadivi, "Development of a model for energy management in office buildings by neural networks (case study: Bandar Abbas)," International Journal of Environmental Science and Technology, vol. 17, no. 6. pp. 3279-3288, 2020, doi: 10.1007/s13762-019-02613-y. [DOI:10.1007/s13762-019-02613-y]
16. M. Valizadeh and A. Khoorani, "An evaluation of climatic conditions pertaining to outdoor tourism in Bandar Abbas, Iran," International Journal of Biometeorology, vol. 64, no. 1. pp. 29-37, 2020, doi: 10.1007/s00484-019-01790-2. [DOI:10.1007/s00484-019-01790-2]
17. F. Razkhaneh and M. Studies, "The Provision of Efficient Transport Services in the Iranian Maritime and Land Transport Interface." 2014.
18. A. Jafari, S. Givehchi, and M. Nasrabadi, "Human Health Risk Assessment in Shahid Rajaee Container Terminal," Open Journal of Ecology, vol. 06, no. 11. pp. 686-698, 2016. [DOI:10.4236/oje.2016.611063]
19. M. Shirowzhan, M. Shanaki, M. H. Sebt, and H. N. Toosi, "Evaluating delay factors in the construction and operation of port operational areas (case study: Shahid Rajaee port complex)," Journal of Fundamental and Applied Sciences, vol. 8, no. 2. p. 732, 2016. [DOI:10.4314/jfas.8vi2s.33]
20. R. M. Najafabadi et al., "Identification of natural hazards and classification of urban areas by TOPSIS model (case study: Bandar Abbas city, Iran)," Geomatics, Natural Hazards and Risk, vol. 7, no. 1, pp. 85-100, 2016. [DOI:10.1080/19475705.2013.871353]
21. H. Saeedi, "Availability of Venerid Clam, Amiantis umbonella as potential metal bioindicator in Bandar Abbas coast, the Persian Gulf," The Egyptian Journal of Aquatic Research, vol. 38, no. 2, pp. 93-103, 2012. [DOI:10.1016/j.ejar.2012.12.003]
22. M. Zare et al., "Outdoor investigation of air quality around Bandar Abbas-Iran oil refinery," International Journal of Environmental Health Engineering, vol. 1, no. 1, p. 9, 2012. [DOI:10.4103/2277-9183.94393]
23. M. H. Bordbar, M. Pedram, and S. Hassanzadeh, "Behaviour of surface atmospheric flow passing over the northeast of the Persian Gulf," Meteorological Applications, vol. 21, no. 2, pp. 271-277, 2014. [DOI:10.1002/met.1325]
24. E. H. Boak and I. L. Turner, "Shoreline definition and detection: a review," Journal of coastal research, vol. 21, no. 4 (214), pp. 688-703, 2005. [DOI:10.2112/03-0071.1]
25. T. Lillesand, R. W. Kiefer, and J. Chipman, Remote sensing and image interpretation. John Wiley & Sons, 2015.
26. M. Louati, H. Saïdi, and F. Zargouni, "Shoreline change assessment using remote sensing and GIS techniques: a case study of the Medjerda delta coast, Tunisia," Arabian Journal of Geosciences, vol. 8, no. 6, pp. 4239-4255, 2015. [DOI:10.1007/s12517-014-1472-1]
27. A. Masria, K. Nadaoka, A. Negm, and M. Iskander, "Detection of shoreline and land cover changes around Rosetta promontory, Egypt, based on remote sensing analysis," Land, vol. 4, no. 1, pp. 216-230, 2015. [DOI:10.3390/land4010216]
28. United States Geological Survey, "EarthExplorer," 2020. https://earthexplorer.usgs.gov/ (accessed Aug. 02, 2020).
29. M. Drusch et al., "Sentinel-2: ESA's optical high-resolution mission for GMES operational services," Remote sensing of Environment, vol. 120, pp. 25-36, 2012. [DOI:10.1016/j.rse.2011.11.026]
30. X. Soria et al., "Validación de algoritmos para la estimación de la clorofila-a con Sentinel-2 en la Albufera de València," in Proceedings of the XVII Congreso de la Asociación Española de Teledetección, 2017, pp. 289-292.
31. ESA, "Copernicus Open Access Hub of the ESA," 2020. https://scihub.copernicus.eu/ (accessed Aug. 02, 2020).
32. ESA, "SNAP Download | STEP," 2020. http://step.esa.int/main/download/snap-download/ (accessed Aug. 02, 2020).
33. G. Navarro, I. Caballero, G. Silva, P.-C. Parra, Á. Vázquez, and R. Caldeira, "Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery," International Journal of Applied Earth Observation and Geoinformation, vol. 58, pp. 97-106, 2017. [DOI:10.1016/j.jag.2017.02.003]
34. M. Pereira-Sandoval et al., "Evaluation of atmospheric correction algorithms over Spanish inland waters for sentinel-2 multi spectral imagery data," Remote Sensing, vol. 11, no. 12, p. 1469, 2019. [DOI:10.3390/rs11121469]
35. A. B. Ruescas, M. Pereira-Sandoval, C. Tenjo, A. Ruiz-Verdú, F. Steinmetz, and L. De Keukelaere, "Sentinel-2 atmospheric correction inter-comparison over two lakes in Spain and Peru-Bolivia," in Proceedings of the Colour and Light in the Ocean from Earth Observation (CLEO) Workshop, Frascati, Italy, 2016, pp. 6-8.
36. C. Brockmann, R. Doerffer, M. Peters, S. Kerstin, S. Embacher, and A. Ruescas, "Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters," ESASP, vol. 740, p. 54, 2016.
37. S. Sterckx, S. Knaeps, S. Kratzer, and K. Ruddick, "SIMilarity Environment Correction (SIMEC) applied to MERIS data over inland and coastal waters," Remote Sensing of Environment, vol. 157, pp. 96-110, 2015. [DOI:10.1016/j.rse.2014.06.017]
38. G. Chander, B. L. Markham, and D. L. Helder, "Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors," Remote sensing of environment, vol. 113, no. 5, pp. 893-903, 2009. [DOI:10.1016/j.rse.2009.01.007]
39. P. Tyagi and U. Bhosle, "Atmospheric correction of remotely sensed images in spatial and transform domain," International Journal of Image Processing, vol. 5, no. 5, pp. 564-579, 2011.
40. J. W. Rousel, R. H. Haas, J. A. Schell, and D. W. Deering, "Monitoring vegetation systems in the great plains with ERTS," in Proceedings of the Third Earth Resources Technology Satellite-1 Symposium; NASA SP-351, 1973, pp. 309-317.
41. S. K. McFeeters, "The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features," International journal of remote sensing, vol. 17, no. 7, pp. 1425-1432, 1996. [DOI:10.1080/01431169608948714]
42. H. Xu, "Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery," International journal of remote sensing, vol. 27, no. 14, pp. 3025-3033, 2006. [DOI:10.1080/01431160600589179]
43. G. L. Feyisa, H. Meilby, R. Fensholt, and S. R. Proud, "Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery," Remote Sensing of Environment, vol. 140, pp. 23-35, 2014. [DOI:10.1016/j.rse.2013.08.029]
44. C. Rashmi, S. Chaluvaiah, and G. H. Kumar, "An Efficient Parallel Block Processing Approach for K -Means Algorithm for High Resolution Orthoimagery Satellite Images," Procedia Computer Science, vol. 89. pp. 623-631, 2016. [DOI:10.1016/j.procs.2016.06.025]
45. V. Jumb, M. Sohani, and A. Shrivas, "Color Image Segmentation Using K-Means Clustering and Otsu ' s Adaptive Thresholding," no. 9. pp. 72-76, 2014.
46. A. Oliver, X. Muñoz, J. Batlle, L. Pacheco, and J. Freixenet, "Improving clustering algorithms for image segmentation using contour and region information," 2006 IEEE International Conference on Automation, Quality and Testing, Robotics, AQTR, vol. 2. 2006. [DOI:10.1109/AQTR.2006.254652]
47. O. Ossama, H. M. O. Mokhtar, and M. E. El-Sharkawi, "An extended k-means technique for clustering moving objects," Egyptian Informatics Journal, vol. 12, no. 1. pp. 45-51, 2011, doi: 10.1016/j.eij.2011.02.007. [DOI:10.1016/j.eij.2011.02.007]
48. Y. Li and H. Wu, "A Clustering Method Based on K-Means Algorithm," Physics Procedia, vol. 25. pp. 1104-1109, 2012. [DOI:10.1016/j.phpro.2012.03.206]
49. K. R. Ahmed and S. Akter, "Analysis of landcover change in southwest Bengal delta due to floods by NDVI, NDWI and K-means cluster with Landsat multi-spectral surface reflectance satellite data," Remote Sensing Applications: Society and Environment, vol. 8, pp. 168-181, 2017. [DOI:10.1016/j.rsase.2017.08.010]
50. E. R. Thieler, E. A. Himmelstoss, J. L. Zichichi, and A. Ergul, "The Digital Shoreline Analysis System (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change," 2009. [DOI:10.3133/ofr20081278]
51. R. Bera and R. Maiti, "Quantitative analysis of erosion and accretion (1975--2017) using DSAS-A study on Indian Sundarbans," Regional Studies in Marine Science, vol. 28, p. 100583, 2019. [DOI:10.1016/j.rsma.2019.100583]
52. S. Roy, M. Mahapatra, and A. Chakraborty, "Shoreline change detection along the coast of Odisha, India using digital shoreline analysis system," Spatial Information Research, vol. 26, no. 5, pp. 563-571, 2018. [DOI:10.1007/s41324-018-0199-6]
53. G. Qiao et al., "55-year (1960--2015) spatiotemporal shoreline change analysis using historical DISP and Landsat time series data in Shanghai," International journal of applied earth observation and geoinformation, vol. 68, pp. 238-251, 2018. [DOI:10.1016/j.jag.2018.02.009]
54. K. Nassar, W. E. Mahmod, H. Fath, A. Masria, K. Nadaoka, and A. Negm, "Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt," Marine Georesources & Geotechnology, vol. 37, no. 1, pp. 81-95, 2019. [DOI:10.1080/1064119X.2018.1448912]
55. E. A. Himmelstoss, R. E. Henderson, M. G. Kratzmann, and A. S. Farris, "Digital shoreline analysis system (DSAS) version 5.0 user guide," 2018. [DOI:10.3133/ofr20181179]
56. R. M. Reynolds, "Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman-Results from the Mt Mitchell expedition," Marine Pollution Bulletin, vol. 27, pp. 35-59, 1993. [DOI:10.1016/0025-326X(93)90007-7]
57. R. Dolan, M. S. Fenster, and S. J. Holme, "Temporal analysis of shoreline recession and accretion," Journal of coastal research, pp. 723-744, 1991.
58. A. S. Genz, C. H. Fletcher, R. A. Dunn, L. N. Frazer, and J. J. Rooney, "The predictive accuracy of shoreline change rate methods and alongshore beach variation on Maui, Hawaii," Journal of Coastal Research, vol. 23, no. 1 (231), pp. 87-105, 2007. [DOI:10.2112/05-0521.1]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2021 All Rights Reserved | International Journal of Coastal and Offshore Engineering