Volume 4, Issue 3 (Fall 2020)                   ijcoe 2020, 4(3): 43-48 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Javansamadi S, Karami khaniki A, Aliakbari Bidokhti A A, Lary K, Ghodsi Hasanabad M. An analytical and field study on influence of breakwaters on beach morphological evolution: a case study (Astara Port). ijcoe. 2020; 4 (3) :43-48
URL: http://ijcoe.org/article-1-215-en.html
1- Department of Environment, Science and Research Branch, Islamic Azad University, Tehran
2- Soil Conservation and Watershed Management Research Institute (SCWMRI)
3- Institute of Geophysics, University of Tehran
4- Department of Marine Science and Technology, Islamic Azad University, Tehran North Branch
Abstract:   (117 Views)
Addressing the interaction of the presence of coastal structures, breakwaters for instance, and morphological changes is of great importance. The purpose of this paper is to investigate the influences of the extended breakwaters of Astara Port on sediment transport and beach morphological evolution in the vicinity of them so as to identify how the extension of breakwaters altered the sea bed topography. In order to describe evolving cross-shore profiles in the study area, beach profile surveys were conducted by a single-beam echo sounder. Results showed that the breakwaters considerably affected their surroundings, and scouring in front of them was obvious. Furthermore, comparisons of measured beach profiles with Deanchr('39')s profile model for the equilibrium beach profile illustrated that the Deanchr('39')s profile was not able to precisely represent the time- mean profiles. As a result, Deanchr('39')s equilibrium profile was modified and a new model was developed so that it can represent more correctly cross-shore morphodynamics of the study area. The results revealed that modified equilibrium profile can be a better representative for the cross-shore profiles of the study area.
Full-Text [PDF 836 kb]   (49 Downloads)    
Type of Study: Research | Subject: Coastal Engineering
Received: 2020/08/23 | Accepted: 2020/10/27 | ePublished: 2021/02/20

1. Basco D.-R, Bellomo D.-A, Pollock C., (1992), Statistically significant beach profile change with and without the presence of seawalls, 23rd International Conference on Coastal Engineering, Venice, p. 1924-1937.
2. Beni A, Lahijani H, Harami R, Arpe K, Leroy S, Marriner N, Berberian M, Andrieu-Ponel V, Djamali M, Mahboubi A, Reimer P (2013) Caspian sea-level changes during the last millennium: historical and geological evidence from the south Caspian Sea. Clim Past 9:1645-1665 [DOI:10.5194/cp-9-1645-2013]
3. Birben, A.R., Özölçer, İ.H., Karasu, S., Kömürcü, M.İ., 2007. Investigation of the effects of offshore breakwater parameters on sediment accumulation. Ocean Eng. 34 2, 284-302. [DOI:10.1016/j.oceaneng.2005.12.006]
4. Bodge, K.R., 1992.Representing equilibrium beach profiles with an exponential expression. J. Coast. Res. 8 (1), 47-55
5. Broker, I., Johnson, H.K., Zyserman, J.A., Ronberg, J.K., Pedersen, C., Deigaard, R., Fredsoe, J., 1995. Coastal profile and coastal area morphodynamic modelling. MAST 68-M Final Workshop, Gdansk, pp. 7-12-7-16
6. Bruun, P., 1954. Coast erosion and the development of beach profiles: technical memorandum Rep.
7. Bowen, A.J., 1980. Simple models of nearshore sedimentation; beach profiles and longshore bars. In: McCann, S.B. (Ed.), The Coastline of Canada. Geological Survey of Canada, pp. 1-11. [DOI:10.4095/102213]
8. Dean, R. G. (1991). Equilibrium beach profiles: characteristics and applications. Journal of Coastal Research, 7(1), 53-84.
9. Dolphin, T.J., Taylor, J.A., Vincent, C.E., Bacon, J.B., Pan, S., O'Conner, B.A., 2005. Storm-scale effects of shore-parallel breakwaters on beaches in a tidal setting (LEACOAST). Proceedings of the 29th International Conference on Coastal Engineering. 3. ASCE, Lisbon, Portugal, pp. 2849-2861 [DOI:10.1142/9789812701916_0230]
10. Du, Y., Pan, S., Chen, Y., 2010. Modelling the effect of wave overtopping on nearshore hydrodynamics and morphodynamics around shore-parallel breakwaters. Coast. Eng. 57 9, 812-826. [DOI:10.1016/j.coastaleng.2010.04.005]
11. Gonzalez, M., Medina, R., Losada, M.A. (1999). Equilibrium beach profile model for perched beaches. Coastal Engineering,36, 343-357. [DOI:10.1016/S0378-3839(99)00018-6]
12. Holman, R. A., Lalejini, D. M., Edwards, K., & Veeramony, J. (2014). A parametric model for barred equilibrium beach profiles. Coastal Engineering,90, 85-94. [DOI:10.1016/j.coastaleng.2014.03.005]
13. Jackson, N. L., Harley, M. D., Armaroli, C.,
14. & Nordstrom, K. F. (2015). Beach morphologies
15. induced by breakwaters with different orientations. Geomorphology,239, 48-57. [DOI:10.1016/j.geomorph.2015.03.010]
16. Johnson, H.K. 2004. Coastal area morphological modelling in the vicinity of groins. Proc., 29th International Conf. on Coastal Engineering, ASCE, pp. 2646-2658.
17. Karunarathna, H., Horrillo-Caraballo, J. M.,Spivack, M., & Reeve, D. E. (2011). Analysis of key parameters in a diffusion type beach profile evolution model. Continental Shelf Research,31(2), 98-107. [DOI:10.1016/j.csr.2010.11.008]
18. Kristensen, S. E., Drønen, N., Deigaard, R., & Fredsoe, J. (2013). Hybrid morphological modelling of shoreline response to a detached breakwater. Coastal Engineering,71, 13-27. [DOI:10.1016/j.coastaleng.2012.06.005]
19. Leontyev, I. (1999). Modelling of morphological changes due to coastal structures. Coastal Engineering,38(3), 143-166. [DOI:10.1016/S0378-3839(99)00045-9]
20. Nam, P. T., Larson, M., Hanson, H., & Hoan, L. X. (2011). A numerical model of beach morphological evolution due to waves and currents in the vicinity of coastal structures. Coastal Engineering,58(9), 863-876. [DOI:10.1016/j.coastaleng.2011.05.006]
21. Nicholson, J., Broker, I., Roelvink, J.A., Price, D., Tanguy, J.M., and Moreno, L. 1997. Intercomparison of coastal area morphodynamic models. Coastal Engineering 31, 97-123. [DOI:10.1016/S0378-3839(96)00054-3]
22. Özkan-Haller, H. T., & Brundidge, S. (2007). Equilibrium Beach Profile Concept for Delaware Beaches. Journal of Waterway, Port, Coastal, and Ocean Engineering,133(2), 147-160. [DOI:10.1061/(ASCE)0733-950X(2007)133:2(147)]
23. Ranasinghe, R., Larson, M., Savioli, J., 2010. Shoreline response to a single shoreparallel submerged breakwater.Coast. Eng. 57 (11), 1006-1017. [DOI:10.1016/j.coastaleng.2010.06.002]
24. Ranjbar, M.H. & Hadjizadeh Zaker, N. Ocean Dynamics (2018) 68: 35. [DOI:10.1007/s10236-017-1116-6]
25. Roelvink, J.A., Reniers, A.J.H.M., Walstra, D.J.R., 1995. Medium-term morphodynamic
26. modelling. MAST 68-M Final Workshop, Gdansk, pp. 7-3-7-6.
27. Saied, U.M., and Tsanis, I.K. 2005. ICEM: Integrated Coastal Engineering Model. Journal of Coastal Research 21(6), 1275-1268. [DOI:10.2112/04-0188.1]
28. Tang, J., Lyu, Y., Shen, Y., Zhang, M., & Su, M. (2017). Numerical study on influences of breakwater layout on coastal waves, wave-induced currents, sediment transport and beach morphological evolution. Ocean Engineering,141, 375-387. [DOI:10.1016/j.oceaneng.2017.06.042]
29. Turker, U., & Kabdaşlı, M. (2006). The effects of sediment characteristics and wave height on shape-parameter for representing equilibrium beach profiles. Ocean Engineering,33(2), 281-291. [DOI:10.1016/j.oceaneng.2004.12.016]
30. Zyserman, J.A., and Johnson, H.K. 2002. Modelling morphological processes in the vicinity of shoreparallel breakwaters. Coastal Engineering 45, 261-284. [DOI:10.1016/S0378-3839(02)00037-6]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2021 All Rights Reserved | International Journal of Coastal and Offshore Engineering