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The Steger and Warming flux vector splitting implicit scheme is used to 

numerically solve two dimensional Reynolds Averaged Navier–Stokes 

(RANS) equations governing the vortex induced vibration of a flexible riser 

laterally supported by a spring and a damper. The k–ε model is used as 

turbulence model to simulate the turbulent flow in the wake of the riser. To 

update the new position of the riser, the lift coefficient obtained from the 

previous RANS iteration is coupled by the body motion equation. The 

proposed numerical solution is able to provide fair results in terms of lift 

coefficient, amplitude of oscillation and the effect of reduced velocity on it. 

The numerical results are compared with the available experimental and 

computational data where fairly good agreement even at the lock-in regime 

has been obtained. Taking wider external boundary, using conservative form 

of the equations, applying k-ε turbulence model for the separated flow and 

finally using the variable time step as the lock-in region approaches, are main 

features of the proposed numerical model. 
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1. Introduction 
Vortex-induced vibration (VIV) is a vibration due to 

oscillatory lift force caused by alternating vortex 

shedding from opposite sides of slender bluff bodies. 

VIV can have damaging effects on structures when 

the frequency of vortex shedding is in vicinity of one 

of the natural frequencies of the structure. VIV can be 

present in many engineering situations including 

marine and offshore applications such as in drilling 

and production risers. Due to its occurrence in diverse 

engineering applications, VIV has been the subject of 

extensive experimental and computational research 

including review articles in [1-5]. In studies of vortex-

induced vibration, the physical model is usually a 

relatively long rigid or elastic cylinder placed normal 

to an incident uniform flow where the cylinder can 

vibrate transverse to the flow direction. 

For a flexible and/or moving cylinder like a marine 

riser, the fluid interacts strongly with the riser motion 

and the vortex shedding frequency is captured by the 

body frequency over a wider range of flow speed [6]. 

Such a phenomenon is known as lock-in and the 

extent of the range of speed depends on the damping 

and mass of the riser [7]. Figure 1 presents a 

schematic sketch of three distinct branches obtained in 

experimental model of Khalak and Williamson [8]. 

The range of Reynolds number used here is 500–

10000 which corresponds to the reduced velocity 

range of 0.5–10 and is included in the experimental 

data of [8]. The Steger and Warming [9] implicit 

factorization scheme is used to solve the RANS 

equations. The k-ε two equation turbulence model is 

used to simulate the turbulent flow in the wake. A 

similar computational study to duplicate the 

experimental results of [8] is reported by Wanderley 

and Levi [7]. The difference between the present 

numerical model with that of [7] is summarized in 

Table 1.  
 

Table 1. Comparison of numerical models 
 

 Present Model Wanderley and 

Levi [7] 

Turbulence 

Model 

k-ε Baldwin-Lomax 

Numerical 

||Scheme 

Steger-Warming Beam-Warming 

Factorization Approximate ------- 

Stretching 

Parameter 

1.02 1.025 

 

The numerical model used here is sufficiently 

accurate and robust and was able to duplicate 

experimental results of [8] with a success similar to 
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that achieved by [7], i.e., the Karman’s vortex street 

effects on the lift and drag coefficients and the build-

up and top part of the upper branch in Figure 1 were 

captured. 

 
Figure 1. Sketch of three branches response model of Khalak 

and Willaimson (1996) 
 

2. Governing Equations 
The derivation of RANS equations in this section 

follows that of [7] closely. By breaking down the 

dependent variables into time averaged and varying 

parts, and also by using the mass-weighted averaging 

procedure of Farve [10] the RANS equations are 

derived. To present a general scheme of RANS 

equations, we first state them in a 3-D form although 

the simulations will be carried out in 2-D. Following 

the mass–weighted averaging procedure of Favre [10] 

the x-component of RANS equation can be written as 

follows: 
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This equation appears to be very similar to the steady-

state, x-direction Navier-Stokes equation aside from 

terms involving the fluctuating velocities. It is 

conventional to transport these terms to the right-hand 

side so as to make the left-hand side b consistent with 

the steady state, Navier-Stokes x-direction equation:  
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The terms that appear in the last bracket of Eq. (1) are 

called Reynolds Stresses. This designation, while 

being traditional, is somewhat illogical because the 

terms in question arise from momentum flow rate 

terms. These “stresses” are the source that creates the 

turbulent disturbance of the otherwise steady Navier-

Stokes equations. An often-cited form of the RANS 

equation:  
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Here the mass averaged parameters are obtained by 

following formula: 
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The viscous stress tensor 𝜏̃𝑖𝑗 can be written as follows: 
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Writing the mean variables and the additional 

Reynolds stress terms such as indicated in Eq. (6), 

will yield the continuity and momentum terms of 

RANS equations. 

jiij uu 
                                                        (6) 

Now, decomposing the components of the equation in 

two coordinate directions and considering the 

incompressible, turbulent momentum flow, the RANS 

equation can be written as follows: 
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To solve the RANS governing equations, the 

approximate factorization method, which is a stable 

approach in 2-D problems, is implemented. To 

estimate the convective terms and diffusion terms, the 

forward central difference and second order central 

difference schemes are used, respectively. Writing the 

RANS equation in 2-D curvilinear coordinates and in 

the conservative and dimensionless form will result in 
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a more convenient and straight forwarded shape of the 

equation as follows:  
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 vevet FFEEQ
                         (10) 

 

where Q is the unknown vector, E and F are the flux 

vectors, and the subscript “v” is used to denote the 

viscous flux vectors. The transformed form of the 

vectors are presented as follows: 
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Wanderley and Levi [7] used Baldwin-Lomax 

turbulent model to calculate the dynamic viscosity of 

modeled system. Here, the k–ε model [11], which is a 

two-equation turbulence model is used. The zero–

equation models lack generality although they need 

minimum computer time, while two–equation models, 

have less limitations. As the boundary layer becomes 

separated, the zero–equation models are no longer 

relevant. As indicated in [12], the shear stress has 

qualitatively the same turbulent structure when it is 

detached as it is attached and the length scale is the 

height of the separated region. Here using this 

assumption, the k–ε model is based on eddy–viscosity 

concept given by: 
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where Cµ is a constant of dynamic turbulence and K 

and ε are obtained from differential equations 

representing transport of turbulence kinetic energy K, 

and the rate of dissipation ε. The transport equations 

are: 
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The three terms on the right hand side of Eq. (16), are 

turbulent diffusion, turbulent energy production and 

viscous dissipation, respectively. The values of 

constants in the equations are given by [11]: 

Cμ=0.09, Cε1=1.44, Cε2=1.92, σk=1.0, σc=1.3. 

Considering three conditions of initial, boundary of 

the body surface and free stream boundary given in 

Eq. (18): 
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The Eq. (11) is solved to obtain the flow variables. 

For the body motion equation, the dimensionless form 

of the Newton’s second law for a cylinder can be 

written as follows: 
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and subscripts L, k and 𝜁 are used to denote lift, 

stiffness and damping coefficients, respectively, and 

𝑦, 𝑦̇, 𝑦̈ are displacement, velocity and acceleration of 

the riser. The initial conditions are: 
0000  )(y,)(y                                                        (20) 

 

3. Numerical formulation 
A simple algebraic grid generator method (using 

geometrical progression) is used to generate the 

computational space around the riser. To capture more 

information at area adjacent to the wall, the stretching 

parameter of q=1.02 is used. In [7] this parameter is 

equal to 1.025. Then the RANS and body motion 

equations were solved simultaneously, to obtain CL 

and in turn the position of riser. To obtaining the CL 

coefficient an integration of pressure and skin friction 

distribution around the riser surface is conducted. The 

pressure distribution is obtained in the previous 

RANS formulation. The governing equations were 

solved as follows: 
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3.1. RANS equation 

 Eq.(10) can be written in the implicit form as follows: 
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Since the scheme of solution is implicit, a 

linearization procedure is applied to the RANS 

equation. The linearization can yield efficient and 

more accurate results. So, a linearization process was 

applied on RANS equations in present study. Using 

the Taylor series, the viscous and inviscid flux vectors 

appeared in the left hand side of Eq. (21), can be 

written based on the Jacobin matrices of A, B, Av and 

Bv (gradients of flux vectors with respect to the 

variable vector, Q) in the following form: 
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which can be rewritten as follows: 
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where I is the identity matrix. To increase the 

efficiency of solution of Eq.(23), the approximate 

factorization was applied. This procedure has reduced 

the process time of the developed code considerably. 

It converts the block penta-diagonal system of 

equations to a block three-diagonal system, which is 

more efficient and has potential to prevent expensive 

mathematical computations. Approximate 

factorization may create some instability in 3-D 

problems and may need artificial dissipation but it is 

quite stable for 2-D problems. In addition by splitting 

the Jacobin matrices based on their eigenvalues, the 

following two step form of equation can be obtained: 
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Simplifying the above equations and introducing the 

central difference approximation to inviscid terms, the 

compact forms of equations can be written as follows: 
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   

 

  



































































11112

11112

1111

2

1

2

1

11

ijijijijijij

jijiijijjiji

ijijijijijjijiij

F̂f̂F̂f̂F̂f̂

ÊêÊêÊê
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where r, s, e, f and corresponding capital letters, are 

functions of constants of Eqs. (24-25). Finally, by the 

Steger and Warming implicit scheme the RANS 

equations can be written as the following two 

equations: 

ijji
*

ij

*

ijij

*

jiij RHSQCAPQCAQCAM   11            (26) 

ij
*

ijijijijijij QQCBPQCBQCBM   111   (27) 
 

3.2. Body motion equation 

To solve the body motion equation, two explicit 

methods were used. From Eq.(19), the acceleration 

term can simply be written as: 

n

K

n
n

Ln yCyC
C

C
y  




2

                                       (28) 

Applying the Lax–Wendroff and Euler methods, the 

position and velocity of riser can be obtained as 

follows: 

tyyy nnn   1

                                                     (29) 

21

2

1
tytyyy nnnn  

                                     (30) 
 

4. Results and Discussion 
Results of the work and discussions are presented 

here. First, the laminar flow results for Re=100 are 

compared with other results presented in the literature. 

Fig 2 shows the generated grid in the physical domain. 

In order to compare the results with those of 

Wanderley and Levi [7] a distance to free stream 

equal to 120 times of cylinder diameter is considered. 

Although this configuration increases the data points 

and the computational time, it ensures capturing the 

properties of vortices in long distances and all 

possible regions. Table 2 compares results of the 

present numerical model with other numerical and 

experimental results in the literature for the lift 

coefficient. The higher value of lift coefficient 
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obtained in the present model, could be related to the 

special finite difference scheme used here. However, 

the main reason of overestimation of CL needs more 

investigations in future works. 

 

(a) 

 

 

(b) 

 

 
Fig. 2 (a): Computational grid in the physical domain. (b): 

Pressure contours around a circular cylinder for Re=100; 

 

The present model, failed to improve the computation 

time. The time required for computation of 

eigenvalues of Jacobin matrices in the Steger–

Warming formulation, may be the main reason for the 

high computational time. 

Figure 3 shows the variation of lift force as a function 

of time at Re=100. As can be seen, numerical 

modeling of the phenomenon is able to present the 

real picture of the flow physics, since the oscillation in 

lift force is caused by the variation of pressure in 

effect of alternating vortex shedding in the wake of 

the riser. Fig. 4 shows the alternating nature of the 

vortices in four distinct time steps at Re=100. The 

well-known vortex street of Karman is quite obvious 

at this figure. 
 
Table 2. Comparison between results obtained by the present 

work and other numerical and experimental data 
 

Reference Trriton [15]  

(dt=0.005)  

Herfjord 

[14]  

J.B. 

Wanderley 

[7] 

Present 

study 

(dt=0.004) 
Model type experimental Finite 

element 

Finite 

difference 

(Beam-

Warming) 

Finite 

difference 

(Steger -

Warming) 
Reynolds 

no 

100 100 100 100 

    Lift 

coefficient 

0.34 0.34 0.313 0.37 

 

 

Fig. 3 Time variation of lift force at Re=100 

 

After the accuracy of the model is verified at Re=100, 

the modeling was generalized to other Reynolds 

numbers. The Reynolds numbers used in the present 

study are in the range of 500 to 10000 which are 

proportional to the reduced velocity in the range of 0.5 

to 10. The mass and damper coefficients used here, 

were Cµ=1.88 and ζ=5.42×10-3, which are the same 

coefficients used in [7] and [8]. Fig. 5 shows results 

obtained for the transversal displacement of the 

vibrating circular cylinder as a function of time. The 

time is traced in two states, one in the build-up of the 

upper branch and another at the top of the upper 

branch Khalak and Williamson [8]. Two values of 

reduced velocities of Ur=4.5 in Fig. 5a and Ur=6.5 in 

Fig. 5b correspond to the build-up and top part of the 

upper branch, respectively. The main reason that the 

lower branch in fig. 1 was not captured at present 

model may be related to the 2-D modeling using 

RANS equations, while the lower branch has been 

obtained in experimental model of Khalak and 

Williamson [8] which is 3-D. 
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(a)                                                                                                    (b) 

 

(d)                                (c)
 

 

Fig. 4 Vortex strength contours at Re=100 in four time steps: (a) 100, (b) 500, (c) 1000, (d) 5000 

 

 (a) (b) 

   

Fig. 5 Transversal displacement of the riser for (a) Ur=4.5; (b) Ur=6.5. 
 

The main reason the displacement is greater for 

Ur=6.5 than Ur=4.5 is that Ur=6.5 is in the lock-in 

region, i.e. the region of top part of upper branch in 

Figure 1, where the synchronization of frequencies 

occurs. Figure 6 shows the spectral analysis of 

displacements for Ur=6.5. As seen, the main 

component of period of displacements is lied on 

T=39.81s which justify entering riser to lock–in area 

at that reduced velocity, since this time period is very 

close to the natural period of riser displacement 

(Tn=40s). The features presented here are in close 

agreement with those presented in Khalak, and 

Williamson [8]. 
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Fig. 6 Spectral analysis of riser displacement, Ur=6.5 

(Re=6500) 

 

5. Conclusions 
Vortex-Induced vibration is a major concern in 

offshore oil and gas industry. This phenomenon can 

cause considerable damage to production lines. Here, 

a numerical code was developed to capture the 

vibration ranges of the risers and the comparison of 

the results show that the finite difference method can 

be considered as an efficient model tool to simulation 

of riser dynamics. Is is also indicated that the regime 

of so called the riser wake can also be captured using 

the present finite difference method.  

First, the results were obtained at Re=100, and 

compared by data available in the literature. Then the 

solution was generalized to other Re (or Ur) values. 

The present mathematical model and respective 

numerical formulation were able to capture the upper 

branch of the amplitudes of oscillation reported in 

Khalak, and Williamson [8]. The lower branch 

obtained in the present investigation did not agree 

with the experimental data. To modeling this part of 

riser oscillation, it is needed to more robust models 

such 3-D ones to obtain an accurate results for lower 

branch regime.  

The main features of present numerical investigation 

are: 

 Using the k-ε turbulent model which is more 

suitable for separated flows.  

 Formulating the conservative form of 

governing equations 

 Applying the approximate factorization to 

increase the efficiency of solution. 
Further investigations can include studying the 

problem with other turbulence models in CFD. Using 

the three-dimensional simulation and considering the 

more complicated geometries of the riser using 

overlapping Chimera Multi-block grids Houzeaux and 

Codina [13]. 
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