[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: ::
Back to the articles list Back to browse issues page
Evaluatoin of Incompressible and Compressible SPH Methods in Modeling Dam Break Flows
Hassan Akbari
Assistant professor Tarbiat modares university
Abstract:   (103 Views)
Smoothed Particle Hydrodynamic (SPH) is an attractive Lagrangian tool for simulating flows with large displacement at free surface boundary. Two widely used subcategories of this method are Weakly compressible SPH (WCSPH) and truly Incompressible SPH (ISPH) methods. Each method has its individual advantages while there is not yet a global agreement about the preference of one method to another one. In this study, accuracy, stability and efficiency of these methods are compared in simulating dam break flow as a well-known hydraulic problem. To decrease unrealistic particle fluctuation especially at free surface boundary, a practical solution is applied to both methods while keeping their total accuracy. In addition, different solid boundary treatments are studied and their effect on total accuracy and stability of SPH methods are investigated.
Based on the results, both ISPH and WCSPH methods can model free surface profiles properly if a proper solid boundary treatment is utilized. Meanwhile, local surface fluctuations can be damped in both methods efficiently by means of the modified surface viscosity.
By means of original versions, it is concluded that ISPH method is generally more stable and more accurate particularly in modeling pressure field than WCSPH method. In addition, it is shown that ISPH method is faster than WCSPH method in solving a dam break flow with equal number of particles. On the other hand, ISPH in its original version using the divergence-free velocity scheme suffers from density loss problem. Since a lot of modifications have been introduced till now to overcome defections of both methods, it is not fair to compare methods with different modifications and therefore, similar modifications are applied in this study. Meanwhile, it can be concluded that each method is growing and is going its own way through enhancement.
Keywords: ISPH, WCSPH, Accuracy, Stability, free surface boundary
Full-Text [PDF 1361 kb]   (35 Downloads)    
Type of Study: Research | Subject: Computational Fluid Dynamics
Received: 2017/11/27 | Accepted: 2018/06/15
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Back to the articles list Back to browse issues page
International Journal of Coastal and Offshore Engineering International Journal of Coastal and Offshore Engineering
Persian site map - English site map - Created in 0.05 seconds with 31 queries by YEKTAWEB 3742