
INTERNATIONAL JOURNAL OF

COASTAL, OFFSHORE & ENVIRONMENTAL ENGINEERING IJCOE Vol.8/No. 4/Autumn 2023 (49-58)

49

Available online at: www. Ijcoe.org

Underwater Image Enhancement Using FPGA-Based Gaussian Filters

with Approximation Techniques

Mehrnaz Monajati1

1 Assistant professor, Graduate University of Advanced Technology, Kerman; m.monajati@kgut.ac.ir

ARTICLE INFO ABSTRACT

Article History:

Received: 02 Jan 2022

Accepted: 05 Oct. 2022

The major challenge in marine environment imaging lies in addressing the

haziness induced by natural phenomena, such as absorption and scattering in

underwater scenes. This haze significantly impacts the visual quality of

underwater images, necessitating improvement. This paper presents a novel

approach aimed at enhancing the efficiency of Gaussian filters for reducing

Gaussian noise in underwater images. The method introduces a pipeline

structure in the Gaussian filter implementation and evaluates the influence of

employing approximate adders on overall performance. Simulation results

reveal a notable speed enhancement exceeding 150%, coupled with a substantial

reduction in power consumption exceeding 34%. However, these advantages

are tempered by an increase in spatial requirements. The study recognizes the

inherent tradeoff between output quality and power, highlighting the

applicability of the proposed design in error-resilient applications, particularly

in image and video processing domains. In essence, the presented approach

offers a compelling solution where the benefits of accelerated speed and

reduced power consumption outweigh spatial constraints, contributing to the

advancement of underwater image enhancement techniques.

Keywords:

Underwater image

Gaussian filter

Low power

High speed

FPGA

1. Introduction

Underwater imaging instruments are essential for

remote sensing due to Earth's significant water

coverage. Optical sensors capture acoustic signals, but

resulting images suffer from issues like limited light

range, lighting disruptions, low contrast, and color

degradation. These disturbances necessitate pre-

processing before crucial image processing tasks.

Edge-preserving filters help denoise images without

compromising quality or edges. Pre-processing

involves correcting illumination, suppressing noise,

enhancing contrast, and adjusting colors. Underwater

images require pre-processing due to degradation

caused by light transmission properties,

environmental factors, and video capture challenges.

Identifying suitable filters for effective pre-processing

is a key focus in addressing these issues.

Exploring the underwater environment through video

and images is a complex and fascinating endeavor,

marked by challenges such as noise, limited visibility,

light scattering, attenuation issues, non-uniform

lighting, and other inherent factors of seawater [1, 2].

The use of artificial light sources exacerbates

problems, introducing issues like image blur, haziness,

and the presence of bluish or greenish hues in

underwater images. This leads to absorption,

scattering, color distortion, and noise [3]. These

challenges pose a significant hurdle for researchers

seeking to harness computer technology for in-depth

studies, especially in the classification, recognition,

and segmentation of coral reef components and

various fish species.

Understanding underwater ecology is crucial for

effective marine resource management and

monitoring. Consequently, image analysis techniques

rooted in computer vision and image processing

technologies have been developed to facilitate proper

monitoring of marine resources. Despite these

advancements, there has been no comprehensive

quantitative or qualitative assessment of all

underwater marine resources, as noted in [4, 5].

Underwater images often exhibit poor visibility, a

foggy appearance, and misty issues, with blurring

occurring due to wave surfaces during object

acquisition. Additionally, these images are prone to

unwanted noise and increased scattering effects.

Distortions vary across images acquired at different

Mehrnaz Monajati / Underwater Image Enhancement Using FPGA-Based Gaussian Filters with Approximation Techniques

50

times. Researchers globally are exploring a range of

techniques, from simple approaches to multilayered

deep techniques, to mitigate distortion effects on

underwater images. The ideal technique should strike

a balance between effectiveness and complexity.

The PCA fusion-based method integrates

homomorphic filters, adaptive histogram equalization,

and median filters for individual color channels. This

technique is applied to fuse two images, enhancing

color contrast and resulting in improved qualitative

outcomes [6]. CLAHE proves effective in enhancing

the visual quality of underwater images by addressing

issues such as uneven illumination. It achieves

adaptability through the application of adaptive

histogram equalization and introduces a weighted map

to enhance the visibility of distant objects [7]. The

combination method involves integrating CLAHE and

dark channel prior for image enhancement. This

approach includes identifying the presence of artificial

light, removing it if detected, and subsequently

applying CLAHE to improve the overall quality of

underwater images [8].

Histogram equalization image enhancement method

was introduced to advance CLAHE, involving the

conversion of RGB input images to the HSV color

space. Individual components (Hue, Saturation, and

Value) underwent histogram equalization, leading to

improved visual quality in the output image compared

to the input [9]. Additionally, a method named mixture

contrast limited adaptive histogram equalization was

developed, where the RGB input image was

transformed into the HSV color space [10]. Both

CLAHE-RGB and CLAHE-HSV images were

generated and combined using Euclidean norm,

contributing to enhanced underwater image quality.

In addressing the challenge of edge identification in

acoustic underwater images, the study detailed in [11]

enhanced these images by utilizing Wiener filtering to

reduce speckle noise while preserving high-frequency

components. Furthermore, a median filter was applied

to eliminate small objects. Performance evaluation

included the extraction of local minimum and

maximum values through morphological operations.

The resulting edge maps, when compared with Canny

and Sobel algorithms, demonstrated superior

performance over conventional methods, although

some noise contamination persisted.

In [12], an approach to identify edges in underwater

images was proposed, utilizing fractional order

differentiation. The study introduced a texture

enhancement filter based on the Grünwald-Letnikov

(G-L) fractional differential operator. An analysis was

conducted on diverse underwater images using both

conventional and fractional differential operators,

with results compared to the Riemann-Liouville

fractional differential operator technique (R-L). The

suggested method demonstrated superior performance

compared to traditional and R-L-based approaches,

particularly in recognizing edges in low-contrast

underwater images. It offered heightened accuracy,

improved brightness, and increased information

extraction.

In [13], the enhancement of underwater image quality

was pursued through the application of edge detection

methods and the utilization of the Lab color model.

The authors executed edge detection subsequent to

color correction and contrast enhancement. Faced with

challenges such as light illumination, water velocity,

and suspended particles, the preference was given to

color detection instead of direct edge recognition,

aiming for improved results in underwater image

processing. Although their approach successfully

identified object shapes, some residual noise

remained. To enhance future edge detection outcomes,

the authors conveyed their intention to incorporate

deep networks for automated operations.

Numerous underwater image enhancement algorithms

have been proposed, leveraging texture and color

features for feature database creation and improved

image attribute description [14-16]. While histogram

equalization is a common method for visual cue

equalization, its simplicity often results in less

appealing enhanced images. Model-based algorithms

introduce some complexity, and recent deep neural

network-based methods, although offering better

quality, demand significant computational resources.

The challenge lies in striking a balance between image

quality and computational complexity. In this context,

we propose an approximate pipeline Gaussian filter

for enhanced underwater image improvement, aiming

for an optimal trade-off.

2. Hardware Platforms for Image Processing

Multiple hardware platforms are accessible for

deploying vision algorithms, including general-

purpose computers, digital signal processors (DSPs),

graphical processing units (GPUs), and reconfigurable

devices like field-programmable gate arrays (FPGAs).

In the field of image processing, FPGAs exhibit

superior performance in complex computations, while

GPUs excel in simpler tasks. Modern FPGAs

empower system designers to create high-performance

computing applications with significant parallelism

[17].

Recent advances in computer vision, particularly in

object detection, motion tracking, and semantic

segmentation, have heightened interest in digital

image processing (DIP) techniques. To address the

need for rapid prototyping, low power consumption,

and low latency, hardware accelerators, such as

custom processors and co-processors, offer an

alternative to software implementations. Meeting the

demands of real-time image processing requires more

processing power than conventional processors can

provide. FPGA implementations outperform DSPs

Mehrnaz Monajati / IJCOE 2023, 8(4); p.49-58

51

and GPPs for algorithms leveraging substantial

parallelism [18, 19]. Traditional DSP arrays, with

fixed architectures and relatively short lifespans, can

be expensive to program line by line with thousands

of lines of code [20]. The memory bandwidth of

contemporary FPGAs far exceeds that of GPPs or

DSPs, running at two to ten times the speed of the

FPGA [21]. Beyond their capability for highly parallel

arithmetic architecture, FPGAs are well-suited for

tasks such as digital filtering, Fast Fourier Transform,

and image processing. FPGAs are a common choice

for rapid prototyping, provide a favorable trade-off

among design metrics, ensuring a swift time-to-market

compared to other integrated circuit (IC) technologies

[22]. FPGAs also find applications in control and

communication [23]. Developing hardware

accelerators in FPGA involves exploring various

architectures, considering aspects such as the

arithmetic used [24, 25], approximate computing

techniques [26], and hardware/software

communication architecture [27]. Features and

techniques like these play a crucial role in

implementing digital image processing algorithms on

hardware. In this context, assessing potential

implementation models and comparing their impact

on system metrics is essential. Such evaluations assist

hardware designers in making informed decisions

about their designs. In [28], the mix module

implementation of underwater image enhancement on

FPGA relies on fusion by wavelet decomposition.

This method significantly improves the visibility of

underwater images, and qualitative results illustrate

the enhanced quality of hazy underwater images.

In [29], the focus is on optimizing the preprocessing

of optical images from autonomous underwater

vehicles in challenging conditions. It highlights the

efficiency of FPGAs for correcting image degradation

through non-linear filtering, implementing two-

dimensional FFT, its inverse, and logarithmic

computation. Demonstrating FPGA effectiveness in

parallel architectures, the study improves histograms

in underwater image preprocessing via frequency-

based filtering and introduces a method applicable in

digital signal processing tasks.

In [30], a benchmarking analysis compared three

Retinex model-based algorithms (SSR, MSR,

MSRCR) on five embedded systems—Beagle Board,

Odroid-XU4, Raspberry Pi 4, Jetson Nano, and Jetson

TX2—for enhancing underwater images. Quality

metrics (UIQM, UCIQUE, BRISQUE, Entropy)

without a reference image were utilized. MSRCR

performed best on Jetson TX2, with a 0.46s processing

time difference compared to a high-performance PC.

Implementing these algorithms on embedded systems

proved cost-effective and held promise for artificial

vision-equipped underwater vehicles.

[31] presented a low-cost, high-throughput design of

the retinex video enhancement algorithm, renowned

for restoring naturalness, especially in dark areas.

Historically burdened by computational complexity,

the hardware (HW) design was implemented on a

field-programmable gate array (FPGA), achieving a

throughput of 60 frames/s for a 1920×1080 image with

minimal latency. The design optimized HW resources

by utilizing a small line buffer, applying approximate

computing for the Gaussian filter, and introducing a

novel exponentiation operation. This approach

significantly reduced HW resources (up to 79.22% of

total resources) compared to existing systems while

ensuring compatibility with commercial devices

through standard HDMI/DVI video ports.

3. Approximate Computing

In error-resilient applications like multimedia, data

mining, image processing, and machine learning,

exact precision is not always essential [32].

Acceptable results with some accuracy degradation

suffice for these applications. This flexibility enables

trade-offs between accuracy and electrical

performance, allowing for gains in power dissipation,

occupied area, and delay by sacrificing a degree of

accuracy [33].

Voltage over-scaling is a solution to reduce circuit

power dissipation [34]. However, operating a circuit

under normal voltage levels may lead to timing-

induced failures, causing significant errors in the most

significant bits. Approximate computing is an efficient

paradigm to lower power consumption and enhance

embedded system performance. Allowing errors at the

outputs of a complex circuit simplifies logic

expressions, reducing logic counts. This approach

results in savings in areas, dynamic power dissipation,

and shortened circuit delays [35].

In image and video processing, where error tolerance

is permissible, adopting approximate computing

techniques offers significant improvements in speed

and power efficiency, albeit with a trade-off in output

quality. The diverse accuracy requirements of various

applications, coupled with the dynamic nature of

accuracy needs within the same application at

different processing stages or over time, underscore

the flexibility and adaptability of approximate

computing in meeting specific computational

demands [36].

4. Gaussian Filter

In image processing, noise filtering is a crucial

element designed to eliminate noise and its effects

from the original image while striving to minimize

distortion. However, these filtering operations

typically involve intensive arithmetic operations,

contributing to increased energy consumption in the

Mehrnaz Monajati / Underwater Image Enhancement Using FPGA-Based Gaussian Filters with Approximation Techniques

52

system. The Gaussian filter (GF) is a convolution

operator employed for image blurring and noise

removal [37]. The Gaussian filter, crucial for image

smoothing, is a fundamental component in the initial

stages of noise-sensitive edge detection algorithms

like Canny, Sobel, and Laplace. Its primary role is to

reduce distortions, ensuring the optimal performance

of these algorithms.

Smoothing filters act as low-pass filters by

suppressing the high-frequency components of an

image. These components include characteristics like

object contours, where the frequency increases with

the abruptness of contour direction changes [37].

Consequently, smoothing filters work to alleviate

these transitions, making them useful for tasks such as

reconstructing incomplete contours caused by

distortions from low resolution.

Eq.(1) represents a two-dimensional Gaussian

function frequently employed in image and signal

processing.

𝑓(𝑥. 𝑦) =
1

2𝜋𝜎2 𝑒
(−

𝑥2+𝑦2

2𝜎2)
 (1)

The equation f(x,y) denotes the value of the Gaussian

function at the coordinates (x,y). σ is the standard

deviation parameter, influencing the width or spread

of the Gaussian function. The standard deviation (σ)

controls the width of the bell-shaped curve generated

by the Gaussian function. Larger values of σ result in

a broader curve. This Gaussian function is commonly

applied in image processing for blurring and

smoothing, emphasizing central values while

suppressing those farther from the center

The Gaussian filter possesses the valuable property of

separability. This means that filters with a size of n×n

can be split into two masks with sizes n×1 and 1×n.

This separation enables the convolution to be

performed in two operations, promoting temporal

parallelism by initiating the second operation before

the completion of the first.

4. Proposed Architecture

To develop an efficient image processing algorithm

for FPGA stream-based processing, a typical

architecture combines row buffers (line buffers)

capable of storing one image row and window buffers,

2D arrays storing a local image area required for

computing the current output pixel. This setup enables

sequential reading of input image/video pixels,

optimizing the use of the FPGA's limited memory.

Only the minimum pixels necessary for computing the

current pixel's filtered value are stored at any given

time. The required number of line buffers is estimated

as H - 1, with H representing the vertical size of the

kernel. The window buffer matches the kernel size

(e.g., a 3×3 window buffer for a Gaussian filter with a

3×3 kernel). The overall architecture is illustrated in

Figure 1.

Figure 1. Delay line buffer structure

The delay line buffer optimizes memory access during

convolution by storing recently accessed pixel values.

In a typical digital image setup, pixels are stored

sequentially in a frame buffer. The delay line buffer,

using shift registers, retains the last values read,

focusing on local storage for pixels still in use within

upcoming convolution windows. This approach

minimizes the need for continuous memory access.

The structure involves nine 1-pixel registers for the

current window and two row buffers storing additional

pixels from the first two rows in the sliding window.

The window buffer must match the size of the kernel.

To observe the filter's impact on the image, the mask

must traverse all pixels, determining the brightness

intensity of each new pixel based on Eq. (2) as

illustrated in Figure 2.

ℎ[𝑖. 𝑗] = 𝐴𝑃1 + 𝐵𝑃2 + 𝐶𝑃3 + 𝐷𝑃4 + (2)

 𝐸𝑃5 + 𝐹𝑃62 + 𝐺𝑃7 + 𝐻𝑃8 + 𝐼𝑃9

Figure 2. Convolution Operation on an image with a

3x3 kernel

4.1 Pipeline Gaussian Filter (PGF)

In this study, Figure 3 displays the Gaussian filter

kernel, while Figure 4 presents the block diagram of

the Gaussian filter implementation. The multiplication

by 2 and 4 is achieved through left-shifting the pixel

value by 1 and 2 bits, respectively. Similarly, division

by 16 is performed by right-shifting the desired

number by 4 bits. The Gaussian filter architecture

consists of eight adders and six shifters for

multiplication operations. However, the critical path

from input to output includes fout adders and two

shifters, leading to a slower calculation speed.

Mehrnaz Monajati / IJCOE 2023, 8(4); p.49-58

53

Figure 3. Application of the weighted kernel

corresponding to the standard 3×3 Gaussian filter on

the image

Figure 4. Block diagram of gaussian filter

A pipeline structure enhances processing speed by

dividing the computation task into stages, allowing

simultaneous execution of different stages. Each stage

of the pipeline handles a specific aspect of the

computation. As one stage completes its task, the

results are seamlessly transferred to the next stage,

enabling continuous processing. This concurrent

operation minimizes idle time and optimizes resource

utilization.

Figure 5. Pipeline Gaussian filter

To improve the speed of the Gaussian filter, a pipeline

structure with four stages is implemented, as

illustrated in Figure 5. This design approach ensures

seamless computation, with each stage playing a role

in enhancing the overall processing speed.

4.3 Approximate Adders

To implement various types of approximate Gaussian

filters, we employed different approximate adders.

Reducing the logic complexity of adders at the bit

level offers enhanced power savings compared to

conventional low-power design methods. The

reduction in logic complexity for a conventional full

adder (FA) cell was attained by minimizing the

number of transistors. Several simplified versions of

the FA were tested based on this logic complexity

reduction.

The approximate full adders (APFAs) employed in the

design of the Gaussian filter exhibit distinct

characteristics. We employ some approximate adders

in [38]. APFA1 approximates both Sum and Cout,

with Sum being precise for 6 out of 8 cases and Cout

for 7 out of 8 cases, excluding specific input

combinations. In contrast, APFA2 focuses on

approximating Sum alone, ensuring precision for 6 out

of 8 cases and Cout for all cases. APFA3 involves

approximation in both Sum and Cout, with Sum being

precise for 5 out of 8 cases and Cout for 7 out of 8

cases. APFA4 approximates Sum and Cout, achieving

precision in Sum for 5 out of 8 cases and Cout for 6

out of 8 cases at the logic level. APFA5 approximates

both Sum and Cout, achieving precision in Sum for 4

out of 8 cases and Cout for 6 out of 8 cases, excluding

specific input combinations. Meanwhile, APFA6

approximates both Sum and Cout, with Sum being

correct for 5 out of 8 cases and Cout for 6 out of 8

cases. APFA7 demonstrates that Sum is correct for 6

out of 8 cases, and Cout is correct for all 8 cases,

indicating a lower probability of error compared to

APFA6. APFA8 introduces three errors in Sum, with

Sum being correct for 5 out of 8 cases. APFA9 shows

Sum is correct for 7 out of 8 cases. Lastly, APFA10

introduces three errors in Sum, with Sum being correct

for 5 out of 8 cases, and Cout is correct for all 8 cases

in APFA10. Table 1 displays the logic equations for

different approximation methods. "None" indicates a

precise full adder with no approximation applied.

Approximations are introduced to 16-bit adders

through a carry ripple structure (Figure 1), specifically

focusing on the least significant bits in each FA block.

Evaluation reveals that acceptable output quality is

sustained up to an 8-bit approximation, with a decline

in quality beyond this threshold.

Mehrnaz Monajati / Underwater Image Enhancement Using FPGA-Based Gaussian Filters with Approximation Techniques

54

Table 1. Logical functions of approximate full adders

16-Bit

FA

Logic function

𝐒𝐮𝐦 𝑪𝒐𝒖𝒕

FA 𝐴′𝐵′𝐶𝑖𝑛 + 𝐴𝐵𝐶𝑖𝑛 + 𝐴𝐵′𝐶𝑖𝑛
′ + 𝐴′𝐵𝐶𝑖𝑛

′
𝐴𝐵 + 𝐵𝐶𝑖𝑛 + 𝐴𝐶𝑖𝑛

APFA1 𝐴𝐵𝐶𝑖𝑛 + 𝐶𝑜𝑢𝑡
′ 𝐶𝑖𝑛 𝐴𝐶𝑖𝑛 + 𝐵

APFA2 𝐶𝑜𝑢𝑡
′ 𝐴𝐵 + 𝐵𝐶𝑖𝑛 + 𝐴𝐶𝑖𝑛

APFA3 𝐶𝑜𝑢𝑡
′ 𝐴𝐶𝑖𝑛 + 𝐵

APFA4 𝐴𝐵𝐶𝑖𝑛 + 𝐶𝑜𝑢𝑡
′ 𝐶𝑖𝑛 𝐴

APFA5 𝐵 𝐴
APFA6 𝐴′ + 𝐵𝐶𝑖𝑛 𝐴

APFA7 𝐴′(𝐵 + 𝐶𝑖𝑛) + 𝐵𝐶𝑖𝑛 𝐴𝐵 + 𝐵𝐶𝑖𝑛 + 𝐴𝐶𝑖𝑛

APFA8 (𝐴′ + 𝐵)𝐶𝑖𝑛 𝐴𝐵 + 𝐵𝐶𝑖𝑛 + 𝐴𝐶𝑖𝑛

APFA9 𝐵′𝐶𝑖𝑛
′ + 𝐴𝐵𝐶 + 𝐴′𝐶𝑖𝑛

′ + 𝐴′𝐵′ 𝐴𝐵 + 𝐵𝐶𝑖𝑛 + 𝐴𝐶𝑖𝑛

APFA10 𝐴′ + 𝐵𝐶𝑖𝑛 𝐴𝐵 + 𝐵𝐶𝑖𝑛 + 𝐴𝐶𝑖𝑛

The simulation results in Section 5 illustrate the

impact of varying the number of least significant bits

(LPL) on which the approximation is applied,

shedding light on its influence on the output quality.

Figure 6. 16-bit carry ripple adder

5. Simulation Results

To evaluate the effect of utilizing an approximate

adder on the output image quality, a 16-bit model of

the Gaussian filter is designed in the MATLAB

environment. Gaussian noise is then introduced to the

original image, serving as input for both the exact

Gaussian filter and the approximate Gaussian filters.

In the context of image quality assessment, several

metrics are commonly employed to quantitatively

evaluate the performance of image processing

algorithms. The Peak Signal-to-Noise Ratio (PSNR)

measures the ratio between the maximum possible

power of a signal and the power of corrupting noise,

providing insight into the fidelity of the reconstructed

image. PSNR is calculated form Eq.(3). Mean Square

Error (MSE) quantifies the average squared difference

between corresponding pixel values in the original and

reconstructed images, offering a measure of the

overall image distortion. It is described in Eq.(4).

Structural Similarity Index (SSIM) , which is

computed using Eq.(5) , evaluates the similarity

between two images, considering luminance, contrast,

and structure, and providing a comprehensive measure

of perceptual quality [39]. μ and σ denote the mean

and variance of the image intensities respectively. C1

and C2 are constants. ω is Gaussian weighting function

that is normalized to unit sum (∑ 𝜔𝑖 = 1𝑁
𝑖=1).

Error Distance (ED), Mean Error Distance (MED),

and Normalized Error Distance (NED) gauge the

spatial discrepancies between corresponding pixels in

the original and reconstructed images, offering

insights into the accuracy of the reconstructed image

at both individual and average levels [40]. the Error

Distance (ED) between two points (xoriginal, yoriginal) and

(xreconstructed, yreconstructed) in an image can also be

expressed using the Euclidean distance formula in the

Eq.(6). NED is calculated by dividing the Euclidean

distance by the diagonal length of the image. MED

provides a measure of the average error distance

between corresponding points in the original and

reconstructed images. These metrics collectively

contribute to a comprehensive evaluation of the

performance of image processing algorithms.

𝑃𝑆𝑁𝑅(𝑓. 𝑔) = 20 𝑙𝑜𝑔10 (
2𝐵−1

𝑀𝑆𝐸(𝑓.𝑔)
) (3)

𝑀𝑆𝐸(𝑓. 𝑔) =
1

𝑀𝑁
∑ ∑ (𝑓𝑖𝑗 − 𝑔𝑖𝑗)

2𝑁
𝑗=1

𝑀
𝑖=1 (4)

𝑆𝑆𝐼𝑀(𝑓. 𝑔) =
(2𝜇𝑓𝜇𝑔+𝐶1)(2𝜎𝑓𝑔+𝐶2)

(𝜇𝑓+
2 𝜇𝑓+

2 +𝐶2)(𝜎𝑓+
2 𝜎𝑓+

2 +𝐶2)
 (5)

𝐸𝐷 = √𝑓2 − 𝑔2 (6)

𝑀𝐸𝐷 =
∑ 𝐸𝐷𝑖

𝑁
𝑖=1

𝑁
(7)

Where, N represents the total number of pixels in the

image, and i denotes the pixel index. The formulas

provide quantitative measures for assessing the quality

and accuracy of reconstructed images.

We selected two real-world underwater images [41] to

simulate genuine underwater conditions. Gaussian

noise was introduced to these images. The addition of

noise was accomplished using the 'imnoise' function

in MATLAB, incorporating a Gaussian distribution

with a mean (m) of 0.0005 and a variance (v) of 0.005.

(a)

(b)

Figure 7. Two raw underwater images taken in diverse

underwater scenes and their histograms. (a) flatfish, (b)

diver [41]

Referring to Figure 8, it is evident that approximate

adders up to 5 bits contribute to satisfactory image

quality in the Gaussian filter output. However, an

additional increase in the LPL causes a sudden decline

in output quality, rendering the approximation

ineffective. Significantly, the utilization of APFA9

Mehrnaz Monajati / IJCOE 2023, 8(4); p.49-58

55

and APFA2 results in the highest output quality, while

employing APFA1 leads to the lowest. This

observation underscores the critical role of both the

approximation method and LPL in determining the

balance between approximation and output quality in

the Gaussian filter.

(a) (b)

Figure 8. Evaluation Metrics for Image Enhancement

of (a) flatfish and (b) diver

Approximate pipeline Gaussian filters (APGF)

demonstrate effective performance up to a 5-bit

approximation for both images, with the diver image

showing satisfactory results up to 6 bits. The success

is attributed to the Gaussian filter's role in smoothing

and reducing image noise, especially in cases with a

wide dynamic range of pixel intensities. When the

histogram is concentrated within a narrow intensity

range, the filter's impact may be more subtle due to

fewer high-frequency components to smooth. Beyond

smoothing, the Gaussian filter influences image

contrast based on pixel intensity distribution in the

histogram. In instances of low contrast, where pixels

concentrate around a specific intensity, the filter

enhances contrast by smoothing intensity transitions,

contributing to overall image quality improvement.

6. Synthesis Results

To assess the physical characteristics of our

approximate Gaussian filters, we developed a

parameterizable and synthesizable Verilog HDL

model for each architecture dedicated to the Gaussian

filter. These models underwent validation through

simulations using the ModelSim simulator and

physical prototyping on the MAX10 device from

Intel® FPGA using Quartus. Power consumption was

estimated using the Power Analysis tool with a VCD

file generated in post-synthesis simulation with

100,000 random inputs. Line buffers, essential for

window-based spatial filters (see Figure 1(are

excluded from synthesis results as their size depends

on the input image size.

As per Table 2, the implementation of the pipeline

method has proven to be instrumental in enhancing the

efficiency of the Gaussian filter. This improvement is

reflected in a notable 48% increase in speed and a

commendable 12% reduction in power consumption.

However, it comes at the cost of a 27% increase in the

required area.

Table 2. Comparison on physical properties of gaussian

filter (GF) and pipeline GF (PGF)

Power (mW) Delay (ns) Logic

GF 119.45 9.82 414

PGF 104.96 5.09 529

Table 3 presents the hardware specifications of

Gaussian filters implemented with approximate

adders. The table highlights the power-efficient

characteristics of certain approximate filters. The

notation APFAiLj denotes the ith approximation of

APFA, where j least significant bits are computed

approximately. Filters utilizing approximate adders

with the sum bit derived from the output carry bit

exhibit slower performance. Notably, APFA5

stands out as the least power-consuming

approximate filter, achieving a power reduction of

over 20%. Additionally, APFA6, APFA7, and

APFA8 significantly enhance the speed of the

Gaussian filter by more than 70%.

The Power-Delay Product (PDP) is a metric used to

evaluate the power efficiency of a digital circuit. It is

calculated by multiplying the power consumption of

the circuit by its propagation delay. The power delay

product is particularly relevant in digital design

because it provides insights into how efficiently a

circuit performs in terms of both speed and power

consumption. A lower PDP value indicates better

Mehrnaz Monajati / Underwater Image Enhancement Using FPGA-Based Gaussian Filters with Approximation Techniques

56

power efficiency because it signifies that the circuit

achieves a balance between low power consumption

and fast operation. Designers often aim to minimize

the power-delay product to enhance the overall

performance and energy efficiency of digital systems.

Based on the data presented in Figure 9, it is evident

that APFA 4, 5, and 6 exhibit the most favorable

Power-Delay Product (PDP) values, indicating

superior power efficiency and speed performance. On

the other hand, APFA2 is identified as having the least

favorable PDP among the analyzed approximate

adders. This observation underscores the importance

of considering the trade-off between power

consumption and delay in the selection of approximate

adders for specific applications.

Table 3. Comparative Analysis of Physical Properties

between Gaussian Filter (GF) and Pipeline Gaussian

Filter (PGF)

APGF Power

reduction%

Speed up % Area

reduction %

APFA1L8 4.09 31.19 6.62

APFA2L2 4.33 4.33 21.55

APFA2L3 5.81 5.81 20.04

APFA2L4 8.39 8.39 19.09

APFA2L8 4.92 4.92 13.80

APFA3L5 6.77 38.96 1.51

APFA3L6 7.85 47.05 1.70

APFA3L7 7.45 49.12 2.27

APFA3L8 5.81 62.55 2.27

APFA4L4 7.45 -7.64 -14.74

APFA4L6 5.81 -9.10 -14.93

APFA5L5 4.50 -28.64 -16.82

APFA5L6 10.49 -21.26 -21.36

APFA5L7 15.14 0.47 -25.90

APFA5L8 21.34 -12.81 -30.43

APFA6L4 4.10 -18.51 -10.78

APFA6L7 4.96 -30.26 -10.78

APFA6L8 4.95 -14.93 -10.78

APFA7L1 9.25 50.12 9.07

APFA7L3 5.31 68.02 18.34

APFA7L4 4.47 72.40 17.01

APFA7L5 7.45 70.45 15.88

APFA7L7 7.16 69.88 15.12

APFA8L1 4.06 50.59 26.47

APFA8L4 6.65 61.06 27.22

APFA9L1 4.06 50.59 26.47

APFA9L4 6.65 61.06 27.22

APFA10L6 9.91 59.92 29.30

Figure 9. PDP values for different approximate

gaussiaan filters

7. Conclusion

In this paper, we propose a novel architecture aimed at

enhancing the efficiency of the Gaussian filter for the

removal of Gaussian noise in underwater images. The

key innovation lies in the utilization of a pipeline

structure for the implementation of the Gaussian filter.

Additionally, we conduct a comprehensive evaluation

of the impact of employing ten approximate adders on

the filter's performance.

The simulation results demonstrate that adopting the

pipeline structure along with 2 to 8-bit approximation

in adders leads to a significant improvement in the

speed of the Gaussian filter, exceeding 150%.

Moreover, this approach yields a noteworthy

enhancement in power consumption, surpassing 34%.

However, it is essential to note that these advantages

come with an associated increase in the required area.

While acknowledging the tradeoff between output

quality and power, our design holds particular

relevance for error-resilient applications, such as

image and video processing. The proposed structure

provides a valuable solution for scenarios where the

benefits of heightened speed and reduced power

consumption outweigh the increase in spatial

requirements.

8. References

[1] Fatan, M., Daliri, M. R., & Shahri, A. M. (2016).

Underwater cable detection in the images using edge

classification based on texture information.

Measurement, 91, 309-317.

[2] Saini, A., & Biswas, M. (2019). Object detection in

underwater image by detecting edges using adaptive

thresholding. 2019 3rd International Conference on

Trends in Electronics and Informatics (ICOEI),

[3] Princess, P. J. B., Silas, S., & Rajsingh, E. B. (2019).

Performance analysis of edge detection algorithms for

object detection in accident images. 2019 Global

Conference for Advancement in Technology (GCAT),

[4] Oliveira, A. J., Ferreira, B. M., & Cruz, N. A. (2021). A

performance analysis of feature extraction algorithms

for acoustic image-based underwater navigation.

Journal of Marine Science and Engineering, 9(4), 361.

[5] Prasenan, P., & Suriyakala, C. (2022). A Study of

Underwater Image Pre-processing and Techniques. In

Computational Vision and Bio-Inspired Computing:

Proceedings of ICCVBIC 2021 (pp. 313-333). Springer.

[6] Borker, S., & Bonde, S. (2017). Contrast Enhancement

and Visibility Restoration of Underwater Optical

Images Using Fusion. International Journal of

Intelligent Engineering & Systems, 10(4).

[7] Mishra, A., Gupta, M., & Sharma, P. (2018).

Enhancement of underwater images using improved

CLAHE. 2018 International Conference on Advanced

Computation and Telecommunication (ICACAT),

[8] Yang, S., Chen, Z., Feng, Z., & Ma, X. (2019).

Underwater image enhancement using scene depth-

based adaptive background light estimation and dark

channel prior algorithms. IEEE Access, 7, 165318-

165327.

Mehrnaz Monajati / IJCOE 2023, 8(4); p.49-58

57

[9] Bhairannawar, S. S. (2018). Efficient medical image

enhancement technique using transform HSV space and

adaptive histogram equalization. In Soft Computing

Based Medical Image Analysis (pp. 51-60). Elsevier.

[10] Ulutas, G., & Ustubioglu, B. (2021). Underwater image

enhancement using contrast limited adaptive histogram

equalization and layered difference representation.

Multimedia Tools and Applications, 80, 15067-15091.

[11] Priyadharsini, R., Sharmila, T. S., & Rajendran, V.

(2016). An efficient edge detection technique using

filtering and morphological operations for underwater

acoustic images. Proceedings of the Second

International Conference on Information and

Communication Technology for Competitive Strategies,

[12] Shourya, S., Kumar, S., & Jha, R. K. (2016). Adaptive

fractional differential approach to enhance underwater

images. 2016 Sixth International Symposium on

Embedded Computing and System Design (ISED),

[13] Singh, N., & Bhat, A. (2023). A robust model for

improving the quality of underwater images using

enhancement techniques. Multimedia Tools and

Applications, 1-22.

[14] Xiao, B., Wang, K., Bi, X., Li, W., & Han, J. (2018).

2D-LBP: an enhanced local binary feature for texture

image classification. IEEE Transactions on Circuits and

Systems for Video Technology, 29(9), 2796-2808.

[15] Ponomarev, A., Nalamwar, H. S., Babakov, I., Parkhi,

C. S., & Buddhawar, G. (2016). Content-based image

retrieval using color, texture and shape features. Key

Engineering Materials, 685, 872-876.

[16] Humeau-Heurtier, A. (2019). Texture feature extraction

methods: A survey. IEEE Access, 7, 8975-9000.

[17] Qasaimeh, M., Denolf, K., Lo, J., Vissers, K.,

Zambreno, J., & Jones, P. H. (2019). Comparing energy

efficiency of CPU, GPU and FPGA implementations for

vision kernels. 2019 IEEE international conference on

embedded software and systems (ICESS),

[18] Gupta, U., Babu, M., Ayoub, R., Kishinevsky, M.,

Paterna, F., Gumussoy, S., & Ogras, U. Y. (2018). An

online learning methodology for performance modeling

of graphics processors. IEEE Transactions on

Computers, 67(12), 1677-1691.

[19] HajiRassouliha, A., Taberner, A. J., Nash, M. P., &

Nielsen, P. M. (2018). Suitability of recent hardware

accelerators (DSPs, FPGAs, and GPUs) for computer

vision and image processing algorithms. Signal

Processing: Image Communication, 68, 101-119.

[20] Diouri, O., Gaga, A., Ouanan, H., Senhaji, S., Faquir, S.,

& Jamil, M. O. (2022). Comparison study of hardware

architectures performance between FPGA and DSP

processors for implementing digital signal processing

algorithms: Application of FIR digital filter. Results in

Engineering, 16, 100639.

[21] De Haro, J. M., Bosch, J., Filgueras, A., Vidal, M.,

Jiménez-González, D., Alvarez, C., Martorell, X.,

Ayguadé, E., & Labarta, J. (2021). OmpSs@ FPGA

framework for high performance FPGA computing.

IEEE Transactions on Computers, 70(12), 2029-2042.

[22] Pirzada, S. J. H., Murtaza, A., Xu, T., & Jianwei, L.

(2020). A reconfigurable model-based design for rapid

prototyping on FPGA. International Journal of

Computer Theory and Engineering, 12(3), 80-84.

[23] Chamola, V., Patra, S., Kumar, N., & Guizani, M.

(2020). Fpga for 5g: Re-configurable hardware for next

generation communication. IEEE Wireless

Communications, 27(3), 140-147.

[24] Cabello, F., León, J., Iano, Y., & Arthur, R. (2015).

Implementation of a fixed-point 2D Gaussian Filter for

Image Processing based on FPGA. 2015 Signal

Processing: Algorithms, Architectures, Arrangements,

and Applications (SPA),

[25] Murray, K. E., Luu, J., Walker, M. J., McCullough, C.,

Wang, S., Huda, S., Yan, B., Chiasson, C., Kent, K. B.,

& Anderson, J. (2020). Optimizing FPGA logic block

architectures for arithmetic. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 28(6), 1378-

1391.

[26] Nomani, T., Mohsin, M., Pervaiz, Z., & Shafique, M.

(2020). xUAVs: Towards efficient approximate

computing for UAVs—Low power approximate adders

with single LUT delay for FPGA-based aerial imaging

optimization. IEEE Access, 8, 102982-102996.

[27] Zhu, Z., Zhang, J., Zhao, J., Cao, J., Zhao, D., Jia, G., &

Meng, Q. (2019). A hardware and software task-

scheduling framework based on CPU+ FPGA

heterogeneous architecture in edge computing. IEEE

Access, 7, 148975-148988

[28] Guraksin, G. E., Deperlioglu, O., & Kose, U. (2019). A

novel underwater image enhancement approach with

wavelet transform supported by differential evolution

algorithm. Nature Inspired Optimization Techniques for

Image Processing Applications, 255-278.

[29] S. M. Alex Raj, M. H. S. (2015). FPGA Implementation

of Underwater Image Enhancement using Nonlinear

Filtering. Indian Journal of Science and Technology,

8(35),1-5.

https://doi.org/10.17485/ijst/2015/v8i35/79110

[30] Aguirre-Castro, O., García-Guerrero, E., López-Bonilla,

O., Tlelo-Cuautle, E., López-Mancilla, D., Cárdenas-

Valdez, J., Olguín-Tiznado, J., & Inzunza-González, E.

(2022). Evaluation of underwater image enhancement

algorithms based on Retinex and its implementation on

embedded systems. Neurocomputing, 494, 148-159.

[31] Park, J. W., Lee, H., Kim, B., Kang, D.-G., Jin, S. O.,

Kim, H., & Lee, H.-J. (2019). A low-cost and high-

throughput FPGA implementation of the retinex

algorithm for real-time video enhancement. IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, 28(1), 101-114.

[32] Padhy, A. P., & Das, B. P. (2023). Lightweight

Approximate Multiplier with Improved Accuracy in

FPGA for Error Resilient Application. 2023 36th

International Conference on VLSI Design and 2023

22nd International Conference on Embedded Systems

(VLSID),

[33] Ullah, S., & Kumar, A. (2023). Approximate Arithmetic

Circuit Architectures for FPGA-based Systems.

Springer Nature.

[34] Amrouch, H., Ehsani, S. B., Gerstlauer, A., & Henkel,

J. (2019). On the efficiency of voltage overscaling under

temperature and aging effects. IEEE Transactions on

Computers, 68(11), 1647-1662.

[35] Bahoo, A. A., Akbari, O., & Shafique, M. (2023). An

Energy-Efficient Generic Accuracy Configurable

Mehrnaz Monajati / Underwater Image Enhancement Using FPGA-Based Gaussian Filters with Approximation Techniques

58

Multiplier Based on Block-Level Voltage Overscaling.

IEEE Transactions on Emerging Topics in Computing.

[36] Jiang, H., Santiago, F. J. H., Mo, H., Liu, L., & Han, J.

(2020). Approximate arithmetic circuits: A survey,

characterization, and recent applications. Proceedings of

the IEEE, 108(12), 2108-2135.

[37] Mafi, M., Martin, H., Cabrerizo, M., Andrian, J.,

Barreto, A., & Adjouadi, M. (2019). A comprehensive

survey on impulse and Gaussian denoising filters for

digital images. Signal Processing, 157, 236-260.

[38] Anusha, G., & Deepa, P. (2020). Design of approximate

adders and multipliers for error tolerant image

processing. Microprocessors and Microsystems, 72,

102940.

[39] Assessment, I. Q. (2004). From error visibility to

structural similarity. IEEE transactions on image

processing, 13(4), 93.

[40] Liang, J., Han, J., & Lombardi, F. (2012). New metrics

for the reliability of approximate and probabilistic

adders. IEEE Transactions on Computers, 62(9), 1760-

1771.

[41] Li, C., Guo, C., Ren, W., Cong, R., Hou, J., Kwong, S.,

& Tao, D. (2019). An underwater image enhancement

benchmark dataset and beyond. IEEE transactions on

image processing, 29, 4376-4389.

