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The major challenge in marine environment imaging lies in addressing the 

haziness induced by natural phenomena, such as absorption and scattering in 

underwater scenes. This haze significantly impacts the visual quality of 

underwater images, necessitating improvement. This paper presents a novel 

approach aimed at enhancing the efficiency of Gaussian filters for reducing 

Gaussian noise in underwater images. The method introduces a pipeline 

structure in the Gaussian filter implementation and evaluates the influence of 

employing approximate adders on overall performance. Simulation results 

reveal a notable speed enhancement exceeding 150%, coupled with a substantial 

reduction in power consumption exceeding 34%. However, these advantages 

are tempered by an increase in spatial requirements. The study recognizes the 

inherent tradeoff between output quality and power, highlighting the 

applicability of the proposed design in error-resilient applications, particularly 

in image and video processing domains. In essence, the presented approach 

offers a compelling solution where the benefits of accelerated speed and 

reduced power consumption outweigh spatial constraints, contributing to the 

advancement of underwater image enhancement techniques. 
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1. Introduction

Underwater imaging instruments are essential for 

remote sensing due to Earth's significant water 

coverage. Optical sensors capture acoustic signals, but 

resulting images suffer from issues like limited light 

range, lighting disruptions, low contrast, and color 

degradation. These disturbances necessitate pre-

processing before crucial image processing tasks. 

Edge-preserving filters help denoise images without 

compromising quality or edges. Pre-processing 

involves correcting illumination, suppressing noise, 

enhancing contrast, and adjusting colors. Underwater 

images require pre-processing due to degradation 

caused by light transmission properties, 

environmental factors, and video capture challenges. 

Identifying suitable filters for effective pre-processing 

is a key focus in addressing these issues. 

Exploring the underwater environment through video 

and images is a complex and fascinating endeavor, 

marked by challenges such as noise, limited visibility, 

light scattering, attenuation issues, non-uniform 

lighting, and other inherent factors of seawater [1, 2]. 

The use of artificial light sources exacerbates 

problems, introducing issues like image blur, haziness, 

and the presence of bluish or greenish hues in 

underwater images. This leads to absorption, 

scattering, color distortion, and noise [3]. These 

challenges pose a significant hurdle for researchers 

seeking to harness computer technology for in-depth 

studies, especially in the classification, recognition, 

and segmentation of coral reef components and 

various fish species. 

Understanding underwater ecology is crucial for 

effective marine resource management and 

monitoring. Consequently, image analysis techniques 

rooted in computer vision and image processing 

technologies have been developed to facilitate proper 

monitoring of marine resources. Despite these 

advancements, there has been no comprehensive 

quantitative or qualitative assessment of all 

underwater marine resources, as noted in [4, 5]. 

Underwater images often exhibit poor visibility, a 

foggy appearance, and misty issues, with blurring 

occurring due to wave surfaces during object 

acquisition. Additionally, these images are prone to 

unwanted noise and increased scattering effects. 

Distortions vary across images acquired at different 
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times. Researchers globally are exploring a range of 

techniques, from simple approaches to multilayered 

deep techniques, to mitigate distortion effects on 

underwater images. The ideal technique should strike 

a balance between effectiveness and complexity. 

The PCA fusion-based method integrates 

homomorphic filters, adaptive histogram equalization, 

and median filters for individual color channels. This 

technique is applied to fuse two images, enhancing 

color contrast and resulting in improved qualitative 

outcomes [6]. CLAHE proves effective in enhancing 

the visual quality of underwater images by addressing 

issues such as uneven illumination. It achieves 

adaptability through the application of adaptive 

histogram equalization and introduces a weighted map 

to enhance the visibility of distant objects [7]. The 

combination method involves integrating CLAHE and 

dark channel prior for image enhancement. This 

approach includes identifying the presence of artificial 

light, removing it if detected, and subsequently 

applying CLAHE to improve the overall quality of 

underwater images [8]. 

Histogram equalization image enhancement method 

was introduced to advance CLAHE, involving the 

conversion of RGB input images to the HSV color 

space. Individual components (Hue, Saturation, and 

Value) underwent histogram equalization, leading to 

improved visual quality in the output image compared 

to the input [9]. Additionally, a method named mixture 

contrast limited adaptive histogram equalization was 

developed, where the RGB input image was 

transformed into the HSV color space [10]. Both 

CLAHE-RGB and CLAHE-HSV images were 

generated and combined using Euclidean norm, 

contributing to enhanced underwater image quality. 

In addressing the challenge of edge identification in 

acoustic underwater images, the study detailed in [11] 

enhanced these images by utilizing Wiener filtering to 

reduce speckle noise while preserving high-frequency 

components. Furthermore, a median filter was applied 

to eliminate small objects. Performance evaluation 

included the extraction of local minimum and 

maximum values through morphological operations. 

The resulting edge maps, when compared with Canny 

and Sobel algorithms, demonstrated superior 

performance over conventional methods, although 

some noise contamination persisted. 

In [12], an approach to identify edges in underwater 

images was proposed, utilizing fractional order 

differentiation. The study introduced a texture 

enhancement filter based on the Grünwald-Letnikov 

(G-L) fractional differential operator. An analysis was 

conducted on diverse underwater images using both 

conventional and fractional differential operators, 

with results compared to the Riemann-Liouville 

fractional differential operator technique (R-L). The 

suggested method demonstrated superior performance 

compared to traditional and R-L-based approaches, 

particularly in recognizing edges in low-contrast 

underwater images. It offered heightened accuracy, 

improved brightness, and increased information 

extraction. 

In [13], the enhancement of underwater image quality 

was pursued through the application of edge detection 

methods and the utilization of the Lab color model. 

The authors executed edge detection subsequent to 

color correction and contrast enhancement. Faced with 

challenges such as light illumination, water velocity, 

and suspended particles, the preference was given to 

color detection instead of direct edge recognition, 

aiming for improved results in underwater image 

processing. Although their approach successfully 

identified object shapes, some residual noise 

remained. To enhance future edge detection outcomes, 

the authors conveyed their intention to incorporate 

deep networks for automated operations. 

Numerous underwater image enhancement algorithms 

have been proposed, leveraging texture and color 

features for feature database creation and improved 

image attribute description [14-16]. While histogram 

equalization is a common method for visual cue 

equalization, its simplicity often results in less 

appealing enhanced images. Model-based algorithms 

introduce some complexity, and recent deep neural 

network-based methods, although offering better 

quality, demand significant computational resources. 

The challenge lies in striking a balance between image 

quality and computational complexity. In this context, 

we propose an approximate pipeline Gaussian filter 

for enhanced underwater image improvement, aiming 

for an optimal trade-off. 

2. Hardware Platforms for Image Processing

Multiple hardware platforms are accessible for 

deploying vision algorithms, including general-

purpose computers, digital signal processors (DSPs), 

graphical processing units (GPUs), and reconfigurable 

devices like field-programmable gate arrays (FPGAs). 

In the field of image processing, FPGAs exhibit 

superior performance in complex computations, while 

GPUs excel in simpler tasks. Modern FPGAs 

empower system designers to create high-performance 

computing applications with significant parallelism 

[17]. 

Recent advances in computer vision, particularly in 

object detection, motion tracking, and semantic 

segmentation, have heightened interest in digital 

image processing (DIP) techniques. To address the 

need for rapid prototyping, low power consumption, 

and low latency, hardware accelerators, such as 

custom processors and co-processors, offer an 

alternative to software implementations. Meeting the 

demands of real-time image processing requires more 

processing power than conventional processors can 

provide. FPGA implementations outperform DSPs 
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and GPPs for algorithms leveraging substantial 

parallelism [18, 19]. Traditional DSP arrays, with 

fixed architectures and relatively short lifespans, can 

be expensive to program line by line with thousands 

of lines of code [20]. The memory bandwidth of 

contemporary FPGAs far exceeds that of GPPs or 

DSPs, running at two to ten times the speed of the 

FPGA [21]. Beyond their capability for highly parallel 

arithmetic architecture, FPGAs are well-suited for 

tasks such as digital filtering, Fast Fourier Transform, 

and image processing. FPGAs are a common choice 

for rapid prototyping, provide a favorable trade-off 

among design metrics, ensuring a swift time-to-market 

compared to other integrated circuit (IC) technologies 

[22]. FPGAs also find applications in control and 

communication [23]. Developing hardware 

accelerators in FPGA involves exploring various 

architectures, considering aspects such as the 

arithmetic used [24, 25], approximate computing 

techniques [26], and hardware/software 

communication architecture [27]. Features and 

techniques like these play a crucial role in 

implementing digital image processing algorithms on 

hardware. In this context, assessing potential 

implementation models and comparing their impact 

on system metrics is essential. Such evaluations assist 

hardware designers in making informed decisions 

about their designs. In [28], the mix module 

implementation of underwater image enhancement on 

FPGA relies on fusion by wavelet decomposition. 

This method significantly improves the visibility of 

underwater images, and qualitative results illustrate 

the enhanced quality of hazy underwater images. 

In [29], the focus is on optimizing the preprocessing 

of optical images from autonomous underwater 

vehicles in challenging conditions. It highlights the 

efficiency of FPGAs for correcting image degradation 

through non-linear filtering, implementing two-

dimensional FFT, its inverse, and logarithmic 

computation. Demonstrating FPGA effectiveness in 

parallel architectures, the study improves histograms 

in underwater image preprocessing via frequency-

based filtering and introduces a method applicable in 

digital signal processing tasks. 

In [30], a benchmarking analysis compared three 

Retinex model-based algorithms (SSR, MSR, 

MSRCR) on five embedded systems—Beagle Board, 

Odroid-XU4, Raspberry Pi 4, Jetson Nano, and Jetson 

TX2—for enhancing underwater images. Quality 

metrics (UIQM, UCIQUE, BRISQUE, Entropy) 

without a reference image were utilized. MSRCR 

performed best on Jetson TX2, with a 0.46s processing 

time difference compared to a high-performance PC. 

Implementing these algorithms on embedded systems 

proved cost-effective and held promise for artificial 

vision-equipped underwater vehicles. 

[31] presented a low-cost, high-throughput design of

the retinex video enhancement algorithm, renowned

for restoring naturalness, especially in dark areas.

Historically burdened by computational complexity,

the hardware (HW) design was implemented on a

field-programmable gate array (FPGA), achieving a

throughput of 60 frames/s for a 1920×1080 image with

minimal latency. The design optimized HW resources

by utilizing a small line buffer, applying approximate

computing for the Gaussian filter, and introducing a

novel exponentiation operation. This approach

significantly reduced HW resources (up to 79.22% of

total resources) compared to existing systems while

ensuring compatibility with commercial devices

through standard HDMI/DVI video ports.

3. Approximate Computing

In error-resilient applications like multimedia, data 

mining, image processing, and machine learning, 

exact precision is not always essential [32]. 

Acceptable results with some accuracy degradation 

suffice for these applications. This flexibility enables 

trade-offs between accuracy and electrical 

performance, allowing for gains in power dissipation, 

occupied area, and delay by sacrificing a degree of 

accuracy [33]. 

Voltage over-scaling is a solution to reduce circuit 

power dissipation [34]. However, operating a circuit 

under normal voltage levels may lead to timing-

induced failures, causing significant errors in the most 

significant bits. Approximate computing is an efficient 

paradigm to lower power consumption and enhance 

embedded system performance. Allowing errors at the 

outputs of a complex circuit simplifies logic 

expressions, reducing logic counts. This approach 

results in savings in areas, dynamic power dissipation, 

and shortened circuit delays [35]. 

In image and video processing, where error tolerance 

is permissible, adopting approximate computing 

techniques offers significant improvements in speed 

and power efficiency, albeit with a trade-off in output 

quality. The diverse accuracy requirements of various 

applications, coupled with the dynamic nature of 

accuracy needs within the same application at 

different processing stages or over time, underscore 

the flexibility and adaptability of approximate 

computing in meeting specific computational 

demands [36]. 

4. Gaussian Filter

In image processing, noise filtering is a crucial

element designed to eliminate noise and its effects

from the original image while striving to minimize

distortion. However, these filtering operations

typically involve intensive arithmetic operations,

contributing to increased energy consumption in the
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system. The Gaussian filter (GF) is a convolution 

operator employed for image blurring and noise 

removal [37]. The Gaussian filter, crucial for image 

smoothing, is a fundamental component in the initial 

stages of noise-sensitive edge detection algorithms 

like Canny, Sobel, and Laplace. Its primary role is to 

reduce distortions, ensuring the optimal performance 

of these algorithms. 

Smoothing filters act as low-pass filters by 

suppressing the high-frequency components of an 

image. These components include characteristics like 

object contours, where the frequency increases with 

the abruptness of contour direction changes [37]. 

Consequently, smoothing filters work to alleviate 

these transitions, making them useful for tasks such as 

reconstructing incomplete contours caused by 

distortions from low resolution. 

Eq.(1) represents a two-dimensional Gaussian 

function frequently employed in image and signal 

processing. 

𝑓(𝑥. 𝑦) =
1

2𝜋𝜎2 𝑒
(−

𝑥2+𝑦2

2𝜎2 )
 (1) 

The equation f(x,y) denotes the value of the Gaussian 

function at the coordinates (x,y). σ is the standard 

deviation parameter, influencing the width or spread 

of the Gaussian function. The standard deviation (σ) 

controls the width of the bell-shaped curve generated 

by the Gaussian function. Larger values of σ result in 

a broader curve. This Gaussian function is commonly 

applied in image processing for blurring and 

smoothing, emphasizing central values while 

suppressing those farther from the center  

The Gaussian filter possesses the valuable property of 

separability. This means that filters with a size of n×n 

can be split into two masks with sizes n×1 and 1×n. 

This separation enables the convolution to be 

performed in two operations, promoting temporal 

parallelism by initiating the second operation before 

the completion of the first. 

4. Proposed Architecture

To develop an efficient image processing algorithm 

for FPGA stream-based processing, a typical 

architecture combines row buffers (line buffers) 

capable of storing one image row and window buffers, 

2D arrays storing a local image area required for 

computing the current output pixel. This setup enables 

sequential reading of input image/video pixels, 

optimizing the use of the FPGA's limited memory. 

Only the minimum pixels necessary for computing the 

current pixel's filtered value are stored at any given 

time. The required number of line buffers is estimated 

as H - 1, with H representing the vertical size of the 

kernel. The window buffer matches the kernel size 

(e.g., a 3×3 window buffer for a Gaussian filter with a 

3×3 kernel). The overall architecture is illustrated in 

Figure 1. 

Figure 1. Delay line buffer structure 

The delay line buffer optimizes memory access during 

convolution by storing recently accessed pixel values. 

In a typical digital image setup, pixels are stored 

sequentially in a frame buffer. The delay line buffer, 

using shift registers, retains the last values read, 

focusing on local storage for pixels still in use within 

upcoming convolution windows. This approach 

minimizes the need for continuous memory access. 

The structure involves nine 1-pixel registers for the 

current window and two row buffers storing additional 

pixels from the first two rows in the sliding window. 

The window buffer must match the size of the kernel. 

To observe the filter's impact on the image, the mask 

must traverse all pixels, determining the brightness 

intensity of each new pixel based on Eq. (2) as 

illustrated in Figure 2. 

ℎ[𝑖. 𝑗] = 𝐴𝑃1 + 𝐵𝑃2 + 𝐶𝑃3 + 𝐷𝑃4 + (2) 

 𝐸𝑃5 + 𝐹𝑃62 + 𝐺𝑃7 + 𝐻𝑃8 + 𝐼𝑃9

Figure 2. Convolution Operation on an image with a 

3x3 kernel 

4.1 Pipeline Gaussian Filter (PGF) 

In this study, Figure 3 displays the Gaussian filter 

kernel, while Figure 4 presents the block diagram of 

the Gaussian filter implementation. The multiplication 

by 2 and 4 is achieved through left-shifting the pixel 

value by 1 and 2 bits, respectively. Similarly, division 

by 16 is performed by right-shifting the desired 

number by 4 bits. The Gaussian filter architecture 

consists of eight adders and six shifters for 

multiplication operations. However, the critical path 

from input to output includes fout adders and two 

shifters, leading to a slower calculation speed. 
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Figure 3. Application of the weighted kernel 

corresponding to the standard 3×3 Gaussian filter on 

the image 

Figure 4. Block diagram of gaussian filter 

A pipeline structure enhances processing speed by 

dividing the computation task into stages, allowing 

simultaneous execution of different stages. Each stage 

of the pipeline handles a specific aspect of the 

computation. As one stage completes its task, the 

results are seamlessly transferred to the next stage, 

enabling continuous processing. This concurrent 

operation minimizes idle time and optimizes resource 

utilization. 

Figure 5. Pipeline Gaussian filter 

To improve the speed of the Gaussian filter, a pipeline 

structure with four stages is implemented, as 

illustrated in Figure 5. This design approach ensures 

seamless computation, with each stage playing a role 

in enhancing the overall processing speed. 

4.3 Approximate Adders 

To implement various types of approximate Gaussian 

filters, we employed different approximate adders. 

Reducing the logic complexity of adders at the bit 

level offers enhanced power savings compared to 

conventional low-power design methods. The 

reduction in logic complexity for a conventional full 

adder (FA) cell was attained by minimizing the 

number of transistors. Several simplified versions of 

the FA were tested based on this logic complexity 

reduction. 

The approximate full adders (APFAs) employed in the 

design of the Gaussian filter exhibit distinct 

characteristics. We employ some approximate adders 

in [38]. APFA1 approximates both Sum and Cout, 

with Sum being precise for 6 out of 8 cases and Cout 

for 7 out of 8 cases, excluding specific input 

combinations. In contrast, APFA2 focuses on 

approximating Sum alone, ensuring precision for 6 out 

of 8 cases and Cout for all cases. APFA3 involves 

approximation in both Sum and Cout, with Sum being 

precise for 5 out of 8 cases and Cout for 7 out of 8 

cases. APFA4 approximates Sum and Cout, achieving 

precision in Sum for 5 out of 8 cases and Cout for 6 

out of 8 cases at the logic level. APFA5 approximates 

both Sum and Cout, achieving precision in Sum for 4 

out of 8 cases and Cout for 6 out of 8 cases, excluding 

specific input combinations. Meanwhile, APFA6 

approximates both Sum and Cout, with Sum being 

correct for 5 out of 8 cases and Cout for 6 out of 8 

cases. APFA7 demonstrates that Sum is correct for 6 

out of 8 cases, and Cout is correct for all 8 cases, 

indicating a lower probability of error compared to 

APFA6. APFA8 introduces three errors in Sum, with 

Sum being correct for 5 out of 8 cases. APFA9 shows 

Sum is correct for 7 out of 8 cases. Lastly, APFA10 

introduces three errors in Sum, with Sum being correct 

for 5 out of 8 cases, and Cout is correct for all 8 cases 

in APFA10. Table 1 displays the logic equations for 

different approximation methods. "None" indicates a 

precise full adder with no approximation applied. 

Approximations are introduced to 16-bit adders 

through a carry ripple structure (Figure 1), specifically 

focusing on the least significant bits in each FA block. 

Evaluation reveals that acceptable output quality is 

sustained up to an 8-bit approximation, with a decline 

in quality beyond this threshold. 
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Table 1. Logical functions of approximate full adders 

16-Bit

FA

Logic function 

𝐒𝐮𝐦 𝑪𝒐𝒖𝒕

FA 𝐴′𝐵′𝐶𝑖𝑛 + 𝐴𝐵𝐶𝑖𝑛 + 𝐴𝐵′𝐶𝑖𝑛
′ + 𝐴′𝐵𝐶𝑖𝑛

′
𝐴𝐵 + 𝐵𝐶𝑖𝑛 + 𝐴𝐶𝑖𝑛

APFA1 𝐴𝐵𝐶𝑖𝑛 + 𝐶𝑜𝑢𝑡
′ 𝐶𝑖𝑛 𝐴𝐶𝑖𝑛 + 𝐵

APFA2 𝐶𝑜𝑢𝑡
′ 𝐴𝐵 + 𝐵𝐶𝑖𝑛 + 𝐴𝐶𝑖𝑛

APFA3 𝐶𝑜𝑢𝑡
′ 𝐴𝐶𝑖𝑛 + 𝐵

APFA4 𝐴𝐵𝐶𝑖𝑛 + 𝐶𝑜𝑢𝑡
′ 𝐶𝑖𝑛 𝐴 

APFA5 𝐵 𝐴 
APFA6 𝐴′ + 𝐵𝐶𝑖𝑛 𝐴 

APFA7 𝐴′(𝐵 + 𝐶𝑖𝑛) + 𝐵𝐶𝑖𝑛 𝐴𝐵 + 𝐵𝐶𝑖𝑛 + 𝐴𝐶𝑖𝑛

APFA8 (𝐴′ + 𝐵)𝐶𝑖𝑛 𝐴𝐵 + 𝐵𝐶𝑖𝑛 + 𝐴𝐶𝑖𝑛

APFA9 𝐵′𝐶𝑖𝑛
′ + 𝐴𝐵𝐶 + 𝐴′𝐶𝑖𝑛

′ + 𝐴′𝐵′ 𝐴𝐵 + 𝐵𝐶𝑖𝑛 + 𝐴𝐶𝑖𝑛

APFA10 𝐴′ + 𝐵𝐶𝑖𝑛 𝐴𝐵 + 𝐵𝐶𝑖𝑛 + 𝐴𝐶𝑖𝑛

The simulation results in Section 5 illustrate the 

impact of varying the number of least significant bits 

(LPL) on which the approximation is applied, 

shedding light on its influence on the output quality. 

Figure 6. 16-bit carry ripple adder 

5. Simulation Results

To evaluate the effect of utilizing an approximate 

adder on the output image quality, a 16-bit model of 

the Gaussian filter is designed in the MATLAB 

environment. Gaussian noise is then introduced to the 

original image, serving as input for both the exact 

Gaussian filter and the approximate Gaussian filters. 

In the context of image quality assessment, several 

metrics are commonly employed to quantitatively 

evaluate the performance of image processing 

algorithms. The Peak Signal-to-Noise Ratio (PSNR) 

measures the ratio between the maximum possible 

power of a signal and the power of corrupting noise, 

providing insight into the fidelity of the reconstructed 

image. PSNR is calculated form Eq.(3). Mean Square 

Error (MSE) quantifies the average squared difference 

between corresponding pixel values in the original and 

reconstructed images, offering a measure of the 

overall image distortion. It is described in Eq.(4). 

Structural Similarity Index (SSIM) , which is 

computed using Eq.(5) , evaluates the similarity 

between two images, considering luminance, contrast, 

and structure, and providing a comprehensive measure 

of perceptual quality [39]. μ and σ denote the mean 

and variance of the image intensities respectively. C1 

and C2 are constants. ω is Gaussian weighting function 

that is normalized to unit sum (∑ 𝜔𝑖 = 1𝑁
𝑖=1 ).

Error Distance (ED), Mean Error Distance (MED), 

and Normalized Error Distance (NED) gauge the 

spatial discrepancies between corresponding pixels in 

the original and reconstructed images, offering 

insights into the accuracy of the reconstructed image 

at both individual and average levels [40]. the Error 

Distance (ED) between two points (xoriginal, yoriginal) and 

(xreconstructed, yreconstructed) in an image can also be 

expressed using the Euclidean distance formula in the 

Eq.(6). NED is calculated by dividing the Euclidean 

distance by the diagonal length of the image. MED 

provides a measure of the average error distance 

between corresponding points in the original and 

reconstructed images. These metrics collectively 

contribute to a comprehensive evaluation of the 

performance of image processing algorithms. 

𝑃𝑆𝑁𝑅(𝑓. 𝑔) = 20 𝑙𝑜𝑔10 (
2𝐵−1

𝑀𝑆𝐸(𝑓.𝑔)
) (3) 

𝑀𝑆𝐸(𝑓. 𝑔) =
1

𝑀𝑁
∑ ∑ (𝑓𝑖𝑗 − 𝑔𝑖𝑗)

2𝑁
𝑗=1

𝑀
𝑖=1  (4) 

𝑆𝑆𝐼𝑀(𝑓. 𝑔) =
(2𝜇𝑓𝜇𝑔+𝐶1)(2𝜎𝑓𝑔+𝐶2)

(𝜇𝑓+
2 𝜇𝑓+

2 +𝐶2)(𝜎𝑓+
2 𝜎𝑓+

2 +𝐶2)
     (5) 

𝐸𝐷 = √𝑓2 − 𝑔2 (6) 

𝑀𝐸𝐷 =
∑ 𝐸𝐷𝑖

𝑁
𝑖=1

𝑁
(7) 

Where, N represents the total number of pixels in the 

image, and i denotes the pixel index. The formulas 

provide quantitative measures for assessing the quality 

and accuracy of reconstructed images. 

We selected two real-world underwater images [41] to 

simulate genuine underwater conditions. Gaussian 

noise was introduced to these images. The addition of 

noise was accomplished using the 'imnoise' function 

in MATLAB, incorporating a Gaussian distribution 

with a mean (m) of 0.0005 and a variance (v) of 0.005. 

(a) 

(b) 

Figure 7. Two raw underwater images taken in diverse 

underwater scenes and their histograms. (a) flatfish, (b) 

diver  [41] 

Referring to Figure 8, it is evident that approximate 

adders up to 5 bits contribute to satisfactory image 

quality in the Gaussian filter output. However, an 

additional increase in the LPL causes a sudden decline 

in output quality, rendering the approximation 

ineffective. Significantly, the utilization of APFA9 
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and APFA2 results in the highest output quality, while 

employing APFA1 leads to the lowest. This 

observation underscores the critical role of both the 

approximation method and LPL in determining the 

balance between approximation and output quality in 

the Gaussian filter. 

(a) (b) 

Figure 8. Evaluation Metrics for Image Enhancement 

of (a) flatfish and (b) diver 

Approximate pipeline Gaussian filters (APGF) 

demonstrate effective performance up to a 5-bit 

approximation for both images, with the diver image 

showing satisfactory results up to 6 bits. The success 

is attributed to the Gaussian filter's role in smoothing 

and reducing image noise, especially in cases with a 

wide dynamic range of pixel intensities. When the 

histogram is concentrated within a narrow intensity 

range, the filter's impact may be more subtle due to 

fewer high-frequency components to smooth. Beyond 

smoothing, the Gaussian filter influences image 

contrast based on pixel intensity distribution in the 

histogram. In instances of low contrast, where pixels 

concentrate around a specific intensity, the filter 

enhances contrast by smoothing intensity transitions, 

contributing to overall image quality improvement. 

6. Synthesis Results

To assess the physical characteristics of our 

approximate Gaussian filters, we developed a 

parameterizable and synthesizable Verilog HDL 

model for each architecture dedicated to the Gaussian 

filter. These models underwent validation through 

simulations using the ModelSim simulator and 

physical prototyping on the MAX10 device from 

Intel® FPGA using Quartus. Power consumption was 

estimated using the Power Analysis tool with a VCD 

file generated in post-synthesis simulation with 

100,000 random inputs. Line buffers, essential for 

window-based spatial filters (see Figure 1(are 

excluded from synthesis results as their size depends 

on the input image size. 

As per Table 2, the implementation of the pipeline 

method has proven to be instrumental in enhancing the 

efficiency of the Gaussian filter. This improvement is 

reflected in a notable 48% increase in speed and a 

commendable 12% reduction in power consumption. 

However, it comes at the cost of a 27% increase in the 

required area. 

Table 2. Comparison on physical properties of gaussian 

filter (GF) and pipeline GF (PGF) 

Power (mW) Delay (ns) Logic 

GF 119.45 9.82 414 

PGF 104.96 5.09 529 

Table 3 presents the hardware specifications of 

Gaussian filters implemented with approximate 

adders. The table highlights the power-efficient 

characteristics of certain approximate filters. The 

notation APFAiLj denotes the ith approximation of 

APFA, where j least significant bits are computed 

approximately. Filters utilizing approximate adders 

with the sum bit derived from the output carry bit 

exhibit slower performance. Notably, APFA5 

stands out as the least power-consuming 

approximate filter, achieving a power reduction of 

over 20%. Additionally, APFA6, APFA7, and 

APFA8 significantly enhance the speed of the 

Gaussian filter by more than 70%.

The Power-Delay Product (PDP) is a metric used to 

evaluate the power efficiency of a digital circuit. It is 

calculated by multiplying the power consumption of 

the circuit by its propagation delay. The power delay 

product is particularly relevant in digital design 

because it provides insights into how efficiently a 

circuit performs in terms of both speed and power 

consumption. A lower PDP value indicates better 
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power efficiency because it signifies that the circuit 

achieves a balance between low power consumption 

and fast operation. Designers often aim to minimize 

the power-delay product to enhance the overall 

performance and energy efficiency of digital systems. 

Based on the data presented in Figure 9, it is evident 

that APFA 4, 5, and 6 exhibit the most favorable 

Power-Delay Product (PDP) values, indicating 

superior power efficiency and speed performance. On 

the other hand, APFA2 is identified as having the least 

favorable PDP among the analyzed approximate 

adders. This observation underscores the importance 

of considering the trade-off between power 

consumption and delay in the selection of approximate 

adders for specific applications. 

Table 3. Comparative Analysis of Physical Properties 

between Gaussian Filter (GF) and Pipeline Gaussian 

Filter (PGF) 

APGF Power 

reduction% 

Speed up % Area 

reduction % 

APFA1L8 4.09 31.19 6.62 

APFA2L2 4.33 4.33 21.55 

APFA2L3 5.81 5.81 20.04 

APFA2L4 8.39 8.39 19.09 

APFA2L8 4.92 4.92 13.80 

APFA3L5 6.77 38.96 1.51 

APFA3L6 7.85 47.05 1.70 

APFA3L7 7.45 49.12 2.27 

APFA3L8 5.81 62.55 2.27 

APFA4L4 7.45 -7.64 -14.74

APFA4L6 5.81 -9.10 -14.93

APFA5L5 4.50 -28.64 -16.82

APFA5L6 10.49 -21.26 -21.36

APFA5L7 15.14 0.47 -25.90

APFA5L8 21.34 -12.81 -30.43

APFA6L4 4.10 -18.51 -10.78

APFA6L7 4.96 -30.26 -10.78

APFA6L8 4.95 -14.93 -10.78

APFA7L1 9.25 50.12 9.07

APFA7L3 5.31 68.02 18.34

APFA7L4 4.47 72.40 17.01

APFA7L5 7.45 70.45 15.88

APFA7L7 7.16 69.88 15.12

APFA8L1 4.06 50.59 26.47

APFA8L4 6.65 61.06 27.22

APFA9L1 4.06 50.59 26.47

APFA9L4 6.65 61.06 27.22

APFA10L6 9.91 59.92 29.30

Figure 9. PDP values for different approximate 

gaussiaan filters 

7. Conclusion

In this paper, we propose a novel architecture aimed at 

enhancing the efficiency of the Gaussian filter for the 

removal of Gaussian noise in underwater images. The 

key innovation lies in the utilization of a pipeline 

structure for the implementation of the Gaussian filter. 

Additionally, we conduct a comprehensive evaluation 

of the impact of employing ten approximate adders on 

the filter's performance. 

The simulation results demonstrate that adopting the 

pipeline structure along with 2 to 8-bit approximation 

in adders leads to a significant improvement in the 

speed of the Gaussian filter, exceeding 150%. 

Moreover, this approach yields a noteworthy 

enhancement in power consumption, surpassing 34%. 

However, it is essential to note that these advantages 

come with an associated increase in the required area. 

While acknowledging the tradeoff between output 

quality and power, our design holds particular 

relevance for error-resilient applications, such as 

image and video processing. The proposed structure 

provides a valuable solution for scenarios where the 

benefits of heightened speed and reduced power 

consumption outweigh the increase in spatial 

requirements. 
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