Write your message
   [Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 3, Issue 3 (Autumn 2019) ::
ijcoe 2019, 3(3): 47-52 Back to browse issues page
Forecasting Short-term Container Vessel Traffic Volume Using Hybrid ARIMA-NN Model
Negar Sadeghi Gargari , Hassan Akbari, Roozbeh Panahi
Tarbiat Modares University
Abstract:   (182 Views)
A combination of linear and non-linear models results in a more accurate prediction in comparison with using linear or non-linear models individually to forecast time series data. This paper utilizes the linear autoregressive integrated moving average (ARIMA) model and non-linear artificial neural network (ANN) model to develop a new hybrid ARIMA-ANN model for prediction of container vessel traffic volume. The suggested hybrid method consists of an optimized feed-forward, back-propagation model with a hybrid training algorithm. The database of monthly traffic of Rajaee Port for thirteen years from 2005-2018 is taken into account. The performance of the developed model in forecasting short-term traffic volume is evaluated using various performance criteria such as correlation coefficient (R), mean absolute deviation (MAD), mean squared error (MSE) and mean absolute percentage error (MAPE). The developed model provides useful insights into container traffic behavior. Comparing the results with the real data-sets demonstrates the superior performance of the hybrid models than using models individually in forecasting traffic data.
Keywords: Forecasting Container Traffic|Neural Network|ARIMA model|Hybrid ARIMA-NN Model ,
Full-Text [PDF 453 kb]   (73 Downloads)    
Type of Study: Applicable | Subject: Coastal Engineering
Received: 2020/02/20 | Accepted: 2020/06/19 | Published: 2020/06/25
References
1. 1- Bichou K. (2014 Apr 16) Port operations, planning, and logistics. CRC Press. [DOI:10.4324/9781315850443]
2. Haiyan W, Youzhen W. (2015) Vessel traffic flow forecasting with the combined model based on support vector machine, International Conference on Transportation Information and Safety (ICTIS) (pp. 695-698). [DOI:10.1109/ICTIS.2015.7232151]
3. Zissis D, Xidias EK, Lekkas D. (2016), Real-time vessel behavior prediction, Evolving Systems, 7(1):29-40. [DOI:10.1007/s12530-015-9133-5]
4. Mostafa MM. (2004), Forecasting the Suez Canal traffic: a neural network analysis. Maritime Policy & Management.;31(2):139-56. [DOI:10.1080/0308883032000174463]
5. Nicolau V, Aiordachioaie D, Popa R. (2004), Neural network prediction of the wave influence on the yaw motion of a ship. IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), (Vol. 4, pp. 2801-2806).
6. Lagerweij R, de Vries G, van Someren M. (2009), Learning a model of ship movements. University of Amsterdam.
7. Zhou Y, Daamen W, Vellinga T, Hoogendoorn SP., (2019), Ship classification based on ship behavior clustering from AIS data. Ocean Engineering. 2019, 175:176-87. [DOI:10.1016/j.oceaneng.2019.02.005]
8. Perera LP, Oliveira P, Soares CG., (2012), Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction. IEEE Transactions on Intelligent Transportation Systems.;13(3):1188-200. [DOI:10.1109/TITS.2012.2187282]
9. Ebada A, Maksoud MA., (2005), Prediction of Ship Turning Manoeuvre Using Artificial Neural Networks. University Duisburg, Essen.
10. Simsir U, Ertugrul S., (2009), Prediction of manually controlled vessels' position and course navigating in narrow waterways using Artificial Neural Networks. Applied Soft Computing; 9(4):1217-24. [DOI:10.1016/j.asoc.2009.03.002]
11. Hajbi A., (2011), Traffic forecasting in Moroccan ports; Supply Chain Forum: An International Journal (Vol. 12, No. 4, pp. 26-35). [DOI:10.1080/16258312.2011.11517278]
12. Anderson DR, Sweeney DJ, Williams TA, Camm JD, Cochran JJ., (2016), Statistics for business & economics. Nelson Education.
13. Zhang W, Zhao S., (2013), Forecasting Research on the Total Volume of Import and Export Trade of Ningbo Port by Gray Forecasting Model. JSW;8(2):466-71. [DOI:10.4304/jsw.8.2.466-471]
14. Chou CC, Chu CW, Liang GS., (2008), A modified regression model for forecasting the volumes of Taiwan's import containers. Mathematical and Computer Modelling;47(9-10):797-807. [DOI:10.1016/j.mcm.2007.05.005]
15. Lam WH, Ng PL, Seabrooke W, Hui EC., (2004), Forecasts and reliability analysis of port cargo throughput in Hong Kong. Journal of urban Planning and Developmen;130(3):133-44. [DOI:10.1061/(ASCE)0733-9488(2004)130:3(133)]
16. Du S, Li T, Gong X, Yang Y, Horng SJ., (2017), Traffic flow forecasting based on hybrid deep learning framework; 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE(و (pp. 1-6). [DOI:10.1109/ISKE.2017.8258813]
17. Eslami P, Jung K, Lee D, Tjolleng A., (2017), Predicting tanker freight rates using parsimonious variables and a hybrid artificial neural network with an adaptive genetic algorithm. Maritime Economics & Logistics;19(3):538-50. 1 [DOI:10.1057/mel.2016.1]
18. Wang L, Zou H, Su J, Li L, Chaudhry S., (2013), An ARIMA‐ANN hybrid model for time series forecasting. Systems Research and Behavioral Science.;30(3):244-59. [DOI:10.1002/sres.2179]
19. Zhang Y, Ye Z., (2008), Short-term traffic flow forecasting using fuzzy logic system methods. Journal of Intelligent Transportation Systems;12(3):102-12. [DOI:10.1080/15472450802262281]
20. Zhang GP., (2003), Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing; 50:159-75. [DOI:10.1016/S0925-2312(01)00702-0]
21. Box GE, Jenkins GM., (1994), Time Series Analysis: Forecasting and Control.
22. Jugović A, Hess S, Poletan Jugović T., (2011), Traffic demand forecasting for port services. Promet-Traffic & Transportatio;23(1):59-69. [DOI:10.7307/ptt.v23i1.149]
23. Beale MH, Hagan MT, Demuth HB., (2010), Neural network toolbox™ user's guide. The MathWorks.
24. Agami N, Atiya A, Saleh M, El-Shishiny H., (2009), A neural network based dynamic forecasting model for Trend Impact Analysis. Technological Forecasting and Social Change;76(7):952-62. [DOI:10.1016/j.techfore.2008.12.004]
25. Skorpil V, Stastny J., (2006), Neural networks and back propagation algorithm. Electron Bulg Sozopol;20-2.
26. Nunes da Silva I, Hernane Spatti D, Andrade Flauzino R, Bartocci Liboni LH, Franco dos Reis Alves S., (2017), Artificial Neural Networks. A Practical Course. [DOI:10.1007/978-3-319-43162-8]
27. Bergstra J, Bengio Y., (2012), Random search for hyper-parameter optimization. Journal of machine learning research;13(Feb):281-305.
28. Gökkuş Ü, Yıldırım MS, Aydin MM., (2017), Estimation of container traffic at seaports by using several soft computing methods: a case of Turkish Seaports. Discrete Dynamics in Nature and Society. [DOI:10.1155/2017/2984853]
29. Zhang G, Patuwo BE, Hu MY., (1998), Forecasting with artificial neural networks: The state of the art. International journal of forecasting;14(1):35-62. [DOI:10.1016/S0169-2070(97)00044-7]
30. McKenzie S., (2004), Social sustainability: Towards some definitions. Systems Research and Behavioral Science;259(27):1-31.
31. Wang S, Wang S, Gao S, Yang W., (2017), Daily Ship Traffic Volume Statistics and Prediction Based on Automatic Identification System Data, 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC) ,(Vol. 2, pp. 149-154). [DOI:10.1109/IHMSC.2017.149]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghi Gargari N, Akbari H, Panahi R. Forecasting Short-term Container Vessel Traffic Volume Using Hybrid ARIMA-NN Model. ijcoe. 2019; 3 (3) :47-52
URL: http://ijcoe.org/article-1-160-en.html


Volume 3, Issue 3 (Autumn 2019) Back to browse issues page
International Journal of Coastal and Offshore Engineering International Journal of Coastal and Offshore Engineering
Persian site map - English site map - Created in 0.06 seconds with 32 queries by YEKTAWEB 4162