1. Watanabe, E., Utsunomiya, T., and Wang, C.M., (2004), Hydroelastic analysis of pontoontype VLFS: a literature survey, Engineering Structures Vol. 26, pp. 245256. [ DOI:10.1016/j.engstruct.2003.10.001] 2. Utsunomiya, T., (2008) in Very Large Floating Structures, Edited by Wang, C.M., Watanabe, E., and Utsunomya, T., Taylor & Francis. 3. Liew, K. M., Han, J. B., (1995), Differential quadrature method for Mindlin plates on Winkler foundations, International Journal of Mechanical Science. Vol. 38, pp. 405421. [ DOI:10.1016/00207403(95)000623] 4. Xiang, Y., (1995), Vibration analysis of rectangular Mindlin plates resting on elastic edge supports, Journal of Sound and Vibration, Vol. 204, pp. 116. [ DOI:10.1006/jsvi.1996.0922] 5. Rossi, R. E., and Bambill, D. V., (1997). Vibrations of a rectangular orthotropic plate with a free edge: A comparison of analytical and numerical results, Ocean Engineering, pp. 521–527. 6. Wang, C. M., Xiang, Y., Utsunomiya, T., Watanabe, E., (2000), Evaluation of modal stress resultants in freely vibrating plates, International Journal of Solids and Structures, Vol. 38, pp. 65256558. [ DOI:10.1016/S00207683(01)000403] 7. Beirao, L., and Veiga, da., (2005), Finite element methods for a modified Reissner–Mindlin free plate model, SIAM Journal on numerical analysis Vol. 42, pp. 1572–1591, 8. Wang, C. M., Wu, W. X., Sha, C., Utsanomiya, T., (2006), LSFD method for accurate vibration modes and modal stress–resultants of freely vibrating plates that model VLFS, Computers and Structures, pp. 2329–2339. [ DOI:10.1016/j.compstruc.2006.08.055] 9. Wu, W. X., Shu, C., Wang, C. M., (2006), Computation of modal stress resultants for completely free vibrating plates by LSFD method, Journal of Sound and Vibration, Vol. 297, pp. 704726. [ DOI:10.1016/j.jsv.2006.04.019] 10. Ma, Y. Q., Ang, K. K., (2006), Free vibration of Mindlin plates based on the relative displacement plate element, Finite Element in Analysis and Design. Vol. 42, pp. 9291030. [ DOI:10.1016/j.finel.2006.03.001] 11. Sadrnejad, S. A., Saedi Daryan, A., (2009) Vibration equation of thick rectangular plates using Mindlin plate theory, Journal of Computer Science. Vol. 5, pp. 838842. [ DOI:10.3844/jcssp.2009.838.842] 12. Xiang, Y., Lai, S.k., and Zhou, L., (2010), DSCelement method for free vibration analysis of rectangular Mindlin plates, International Journal of Mechanical Sciences Vol. 52, pp. 548560. [ DOI:10.1016/j.ijmecsci.2009.12.001] 13. Xiang, Y., Lai, S.k., and Zhou, L., Lim, C.W., (2010), DSCRitz element method for vibration analysis of rectangular Mindlin plates with mixed edge supports European Journal of Mechanics, Vol. 24, pp. 619628. 14. HosseiniHashemi, Sh., Rokni Damavandi Taher., Akhavan, H., and Omidi, M., (2010), Free vibration of functionally graded rectangular plates using firstorder shear deformation plate theory, Applied Mathematical Modelling Vol. 34, pp. 12761261. [ DOI:10.1016/j.apm.2009.08.008] 15. HosseiniHashemi, Sh., Fadaee, M., and Atashipour, S.R., (2011), A new exact analytical approach for free vibration of ReissnerMindlin Functionally graded rectangular plates. International Journal of Mechanical Sciences Vol. 53, pp. 1122. [ DOI:10.1016/j.ijmecsci.2010.10.002] 16. HosseiniHashemi, Sh., Fadaee, M., and Rokni Damavandi Taher, H., (2011), Exact solution for free flexural vibration of Levy–type rectangular thick plates via thirdorder shear deformation plate theory. Applied Mathematical Modelling Vol. 35, pp. 708727. [ DOI:10.1016/j.apm.2010.07.028] 17. Ramu, I., and Mohanty, S.C., (2012). Study on free vibration analysis of rectangular plate structures using finite element method, Procedia Engineering Vol. 38, pp. 27582766. [ DOI:10.1016/j.proeng.2012.06.323] 18. Pereira, W.l.a., Karam, V.J., Carrer, J.A.M., and Mansur, W.J., (2012), A dynamic formulation for the analysis of thick elastic plates by the boundary element method. Engineering Analysis with Boundary Elements, Vol. 36, pp.1138–1150. [ DOI:10.1016/j.enganabound.2012.02.002] 19. Eftekhari, S.A., and Jafari, A.A., (2013). Modified mixed RitzDQ formulation for free vibration of thick rectangular and skew plates with general boundary conditions, Applied Mathematical Modelling Vol. 37, pp. 73987426. [ DOI:10.1016/j.apm.2013.02.040] 20. Cho, D.S., Vladimir, N., and Choi, T.M., (2013), Approximate natural vibration analysis of rectangular plates with opening using assumed mode method. Int. J. Naval Archit. Ocean Eng. Vol. 5, pp. 478491. [ DOI:10.2478/IJNAOE20130147] 21. Thai, H.T., and Choi, D.H., (2013), Analytical solutions of refined plate theory for bending bucking and vibration analyses of thick plates, Applied Mathematical Modelling Vol. 37, pp. 83108323. [ DOI:10.1016/j.apm.2013.03.038] 22. Senjanovic, I., Vladimir, N., and Hadzic, N., (2015), Modified Mindlin plate theory and shear locking–free finite element formulation, Mechanics Research Communication Vol. 55, pp. 95104. [ DOI:10.1016/j.mechrescom.2013.10.007] 23. Praveen, K.M., Karmakar, D., and Nasar, T., (2016), Hydroelastic analysis of floating elastic thick plate in shallow water depth, Perspectives in Science Vol. 8, pp. 770772. [ DOI:10.1016/j.pisc.2016.06.084] 24. Senjanovic, I., Tomic, M., Hadzic, N., and Vladimir, N., (2017), Dynamic finite element formulations for moderately thick plate vibtations based on the modified Mindlin theory, Engineering Structures Vol. 139, pp. 100113. [ DOI:10.1016/j.engstruct.2017.01.021] 25. Khezri, M., Gharib, M., and Rasmusse, K.J.R., (2018), A unified approach to meshless analysis of thin to moderately thick plates based on a shearlockingfree Mindlin theory formulation, ThinWalled Structures Vol. 124, pp. 161179. [ DOI:10.1016/j.tws.2017.12.004] 26. Shirkol, A.I., and Nasar, T., (2018), Coupled boundary element method and finite element method for hydroelastic analysis of floating plate. Journal of Ocean Engineering and Science Vol. 3, pp.1937. [ DOI:10.1016/j.joes.2017.11.003] 27. Wikipedia, (2018), Very Large Floating Structures, http://en.wikipedia.org/wiki/very_large_floating_structures
