:: Volume 2, Issue 2 (9-2018) ::
ijcoe 2018, 2(2): 1-9 Back to browse issues page
Effect of FRP Material Properties on Chord SCFs of an FRP-Strengthened Offshore Tubular T-Joint under Brace Axial Loading
Alireza Sadat Hosseini , Mohammad Lesani , Mohammad Reza Bahaari
University of Tehran
Abstract:   (253 Views)
The relative stress concentration factors (SCF) on the chord member of a tubular T-joint strengthened with FRP which is subjected to brace axial loading are studied. ABAQUS Finite Element software package is used to perform the numerical analyses. Prior to the main studies, the unstiffened joint was validated against the API and Lloyd’s Register equations together with the experimental data. Six different types of FRP materials such as Glass/Vinyl ester, Glass/Epoxy (Scotch ply 1002), S-Glass/Epoxy, Aramid/Epoxy (Kevlar 49/Epoxy), Carbon/Epoxy (T300-5208) and Carbon/Epoxy (AS/3501) are used as strengthening material in order to enhance the fatigue life of tubular T-joints through lowering the SCFs. Promising results derived from analyses which show that FRP strengthening method can be considered as an effective method for decreasing the SCF values at tubular T-joints. Results of the analyses for 6mm CFRP layup revealed that under the action of axial loading the FRP strengthening could decrease the SCFs up to 30% and 50% at crown and saddle points of the chord member.
Keywords: Tubular T-joint, Offshore Platforms, FRP-strengthening, SCF, Finite Element Analysis
Full-Text [PDF 554 kb]   (188 Downloads)    
Type of Study: Research | Subject: Offshore Engineering
Received: 2018/04/29 | Accepted: 2018/09/1
References
1. Jia, J., (2008), An efficient nonlinear dynamic approach for calculating wave induced fatigue damage of offshore structures and its industrial applications for lifetime extension, Applied Ocean Research, Vol.30, p.189-198. [DOI:10.1016/j.apor.2008.09.003]
2. API (American Petroleum Institute), (2014), Recommended practice for planning, designing and constructing fixed offshore platforms - working stress design, API RP 2A WSD, 22nd edition.
3. Kuang, J. G., Potvin, A. B., and Leick, R. D., (1975), Stress concentration in tubular joints, Proceedings of the offshore technology conference (OTC 2205), Houston, Texas, US.
4. Wordsworth, A. C., and Smedley, G. P., (1978), Stress concentrations at unstiffened tubular joints, Proceedings of the European offshore steels research seminar, Paper 31, Cambridge, UK.
5. Efthymiou, M., and Durkin, S., (1985), Stress concentrations in T/Y and gap/overlap K-joints, Proceedings of the conference on behavior of offshore structures, Delft, Netherlands.
6. Hellier, A. K., Connolly, M., and Dover, W. D., (1990), Stress concentration factors for tubular Y and T-joints, International Journal of Fatigue, Vol.12, p.13-23. [DOI:10.1016/0142-1123(90)90338-F]
7. Health and Safety Executive (UK), (1997), OTH 354: Stress concentration factors for simple tubular joints - assessment of existing and development of new parametric formulae. Prepared by Lloyd's Register of Shipping.
8. Chang, E., and Dover, W. D., (1999), Parametric equations to predict stress distributions along the intersection of tubular X and DT-joints, International Journal of Fatigue, Vol.21, p.619-635. [DOI:10.1016/S0142-1123(99)00018-3]
9. Chang, E., and Dover, W. D., (1999), Prediction of stress distributions along the intersection of tubular Y and T-joints, International Journal of Fatigue, Vol.21, p.361-381. [DOI:10.1016/S0142-1123(98)00083-8]
10. Karamanos, S. A., Romeijn, A., and Wardenier, J., (2002), SCF equations in multi-planar welded tubular DT-joints including bending effects, Marine Structures, Vol.15, p.157-173. [DOI:10.1016/S0951-8339(01)00020-X]
11. Lotfollahi-Yaghin, M. A., and Ahmadi, H., (2010), Effect of geometrical parameters on SCF distribution along the weld toe of tubular KT-joints under balanced axial loads, International Journal of Fatigue, Vol.32, p.703-719. [DOI:10.1016/j.ijfatigue.2009.10.008]
12. Ahmadi, H., Lotfollahi-Yaghin, M. A., and Aminfar, M. H., (2011), Geometrical effect on SCF distribution in uniplanar tubular DKT- joints under axial loads, Journal of Constructional Steel Research, 67, p.1282-1291. [DOI:10.1016/j.jcsr.2011.03.011]
13. Lotfollahi-Yaghin, M. A., and Ahmadi, H., (2011), Geometric stress distribution along the weld toe of the outer Brace in two planar tubular DKT- joints: parametric study and deriving the SCF design equations, Marine Structures, Vol.24, p.239-260. [DOI:10.1016/j.marstruc.2011.02.005]
14. Ahmadi, H., Lotfollahi-Yaghin, M. A., and Aminfar, M. H., (2011), Distribution of weld toe stress concentration factors on the central Brace in two-planar CHS DKT connections of steel offshore structures, Thin-Walled Structures, Vol.49, p.1225-1236. [DOI:10.1016/j.tws.2011.06.001]
15. Lesani, M, Bahaari, M. R., and Shokrieh, M. M., (2013), Numerical investigation of FRP-strengthened tubular T-joints under axial compressive loads, Composite Structures, Vol.100, p.71-78. [DOI:10.1016/j.compstruct.2012.12.020]
16. Ramachandra Murthy, D. S., Madhava Rao, A. G., Ghandi, P., and Pant, P.K., (1992), Structural efficiency of internally ring stiffened steel tubular joints, Journal of Structural Engineering, Vol.118, p.3016-3035. [DOI:10.1061/(ASCE)0733-9445(1992)118:11(3016)]
17. Nwosu, D. I., Swamidas, A. S. J., and Munaswamy, K., (1995), Numerical stress analysis of internal ring-stiffened tubular T joints, Journal of Offshore Mechanics and Arctic Engineering, Vol.117, p.113-125. [DOI:10.1115/1.2827061]
18. Hoon, K. H., Wong, L. K., and Soh, A. K., (2001), Experimental investigation of a doubler-plate reinforced tubular T-joint subjected to combined loadings, Journal of Constructional Steel Research, Vol.57(9), p.1015-1039. [DOI:10.1016/S0143-974X(01)00023-2]
19. Myers, P. T., Brennan, F. P., and Dover, W. D., (2001), The effect of rack/rib plate on the stress concentration factors in jack up Chords, Marine Structures, Vol.14, p.485-505. [DOI:10.1016/S0951-8339(00)00051-4]
20. Ahmadi, H., Lotfollahi-Yaghin, M. A., Shao, Y. B., and Aminfar, M. H., (2012), Parametric study and formulation of outer Brace geometric stress concentration factors in internally ring stiffened tubular KT-joints of offshore structures, Applied Ocean Research, Vol.38, p.74-91. [DOI:10.1016/j.apor.2012.07.004]
21. Ahmadi, H., Lotfollahi-Yaghin, M. A., and Shao, Y. B., (2013), Chord-side SCF Distribution of central Brace in internally ring stiffened tubular KT-joints: A geometrically parametric study, Thin-Walled Structures, Vol.70, p.93-105. [DOI:10.1016/j.tws.2013.04.011]
22. Hollaway, L. C., and Cadei, J., (2002), Progress in the technique of upgrading metallic structures with advanced polymer composites, Progress in Structural Engineering and Materials, Vol.4(2), p.131-148. [DOI:10.1002/pse.112]
23. Zhao, X. L., and Zhang, L., (2007), State of the art review on FRP strengthened steel structures, Engineering Structures, Vol.29(8), p.1808-1823. [DOI:10.1016/j.engstruct.2006.10.006]
24. Zhao, X. L., (2009), FRP strengthened metallic structures, Thin Walled Structures, Special Issue, Vol.47(10), p.1019. [DOI:10.1016/j.tws.2008.10.005]
25. Jiao, H., Zhao, and X. L., (2004), CFRP strengthened butt welded very high strength (VHS) circular steel tubes, Thin- Walled Structures, Vol.42(7), p.963-978. [DOI:10.1016/j.tws.2004.03.003]
26. Shaat, A., and Fam, A., (2007), Finite element analysis of slender HSS columns strengthened with high modulus composites, Steel and Composite Structures, Vol.7(1), p.19-34. [DOI:10.12989/scs.2007.7.1.019]
27. Zhao, X. L., Fernando D., and Al-Mahaidi R., (2006), CFRP strengthened RHS subjected to transverse end bearing force, Engineering Structures, Vol.28(11), p.1555-1565. [DOI:10.1016/j.engstruct.2006.02.008]
28. Bambach, M. R., Jama, H. H., and Elchalakani, M., (2009), Axial capacity and design of thin walled steel SHS strengthened with CFRP, Thin-Walled Structures, Vol.7(10), p.1112-1121. [DOI:10.1016/j.tws.2008.10.006]
29. Wang, X. G., Bloch, J. A., and Cesari, D., (1991), Axial crushing of tubes made of multi-materials, Proceedings of the 4th international MECAMAT seminar on mechanics and mechanisms of damage in composites and multi-materials, St. Etienne, France, London, Mechanical Engineering Publications Ltd., p.351-360.
30. Nishino, T., and Furukawa, T., (2004), Strength deformation capacities of circular hollow section steel member reinforced with carbon fiber, Proceedings of the 7th pacific structural steel conference, Long Beach, California, USA, American Institute of Steel Construction.
31. Teng, J. G., and Hu, Y. M., (2007), Behaviour of FRP jacketed circular steel tubes and cylindrical shells under axial compression, Construction and Building Materials, Vol.21(4), p.827-838. [DOI:10.1016/j.conbuildmat.2006.06.016]
32. Alemdar, F., Matamoros, A., Bennett, C., Barrett- Gonzalez, R., and Rolfe, S. T., (2012), Use of CFRP Overlays to strengthen welded connections under fatigue loading, Journal of Bridge Engineering, Vol.17(3), p.420-431. [DOI:10.1061/(ASCE)BE.1943-5592.0000230]
33. Lesani, M, Bahaari, M. R., and Shokrieh, M. M., (2014), Experimental investigation of FRP-strengthened tubular T-joints under axial compressive loads, Construction and Building Materials, Vol.53, p.243-252. [DOI:10.1016/j.conbuildmat.2013.11.097]
34. Lesani, M., Bahaari, M. R., and Shokrieh, M. M., (2015), FRP wrapping for the rehabilitation of Circular Hollow Section (CHS) tubular steel connections, Thin-Walled Structures, Vol.90, p.216-234. [DOI:10.1016/j.tws.2014.12.013]
35. Chen, Y., Hu, K., and Yang, J., (2016), Investigation on SCFs of concrete-filled circular Chord and square Braces K-joints under balanced axial loading, Steel and Composite Structures, Vol.21(6), p.1227-1250. [DOI:10.12989/scs.2016.21.6.1227]
36. Yang, J., Yang, C., Su, M., and Lian, M., (2016), Stress concentration factors test of reinforced concrete-filled tubular Y joints under in-plane bending, Steel and Composite Structures, Vol.22(1), p.203-216. [DOI:10.12989/scs.2016.22.1.203]
37. Jiang, S., Guo, X., Xiong, Z., Cai, Y., and Zhu, S., (2017), Experimental studies on behavior of tubular T-joints reinforced with grouted sleeve, Steel and Composite Structures, Vol.23(5), p.585-596. [DOI:10.12989/scs.2017.23.5.585]
38. Sadat Hosseini, A., Bahaari, M. R., Lesani, M., (2018), SCF distribution in FRP-strengthened tubular T-joints under brace axial loading, Scientia Iranica, Articles in Press, Accepted Manuscript, Available Online from 06 May 2018.
39. Sadat Hosseini, A., Bahaari, M. R., Lesani, M., (2017), SCF in FRP strengthened tubular T-joints under brace axial loading, in-plane bending and out-of-plane bending moments, Proceedings of the 4th conference on smart monitoring, assessment and rehabilitation of civil structures, Zurich, Switzerland, Paper no. 151.
40. ABAQUS/CAE, (2014), Standard user's manual, Version 6.14-1.
41. AWS (American Welding Society), (2010), Structural welding code, AWS D 1.1:2010 (22nd Edition). Miami, FL (USA), American Welding Society, Inc.
42. Lee, M. M. K., (1999), Estimation of stress concentrations in single-sided welds in offshore tubular joints, International Journal of Fatigue, Vol.21, p.895-908. [DOI:10.1016/S0142-1123(99)00083-3]
43. Chiew, S. P., Soh, C. K., Fung, T. C., and Soh, A. K., (1999), Numerical study of multi-planar tubular DX-joints subject to axial loads, Computers and Structures, Vol.72, p.746-761. [DOI:10.1016/S0045-7949(98)00217-X]
44. Lie, S. T., Lee, C. K., and Wong, S. M., (2001), Modeling and mesh generation of weld profile in tubular Y-joint, Journal of Constructional Steel Research, Vol.57, p.547-567. [DOI:10.1016/S0143-974X(00)00031-6]
45. N'Diaye, A., Hariri, S., Pluvinage, G., and Azari, Z., (2007), Stress concentration factor analysis for notched welded tubular T joints, International Journal of Fatigue, Vol.29, p.1554-1570. [DOI:10.1016/j.ijfatigue.2006.10.030]
46. IIW-XV-E., (1999), International institute of welding subcommission XV-E, recommended fatigue design procedure for welded hollow section joints, IIW Docs, XV-1035-99/XIII-1804 99, International Institute of Welding, France.
47. Ganesh, K, and Naik, N. K., (2005), Some strength studies on FRP laminates, Journal of Composite Structures, Vol.24, p.51-58. [DOI:10.1016/0263-8223(93)90054-T]
48. Kollár, L. P., and Springer, G. S., (2003), Mechanics of composite structures, Cambridge university press. [DOI:10.1017/CBO9780511547140]


XML     Print



Volume 2, Issue 2 (9-2018) Back to browse issues page