1. Leeder, M. R. (2009). Sedimentology and sedimentary basins: from turbulence to tectonics. John Wiley & Sons.
2. Dezvareh, R. (2019). Providing a new approach for estimation of wave set-up in Iran coasts. Research in marine sciences, 4(1), 438-448.
3. Van Rijn, L. C. (1993). Principles of sediment transport in rivers, estuaries and coastal seas (Vol. 1006, pp. 11-3). Amsterdam: Aqua publications.
4. Mangor, K. (2004). Shoreline management guidelines.
5. Mohandes, M. A., Halawani, T. O., Rehman, S., & Hussain, A. A. (2004). Support vector machines for wind speed prediction. Renewable energy, 29(6), 939-947. [
DOI:10.1016/j.renene.2003.11.009]
6. Bhattacharya, B., & Solomatine, D. P. (2006). Machine learning in soil classification. Neural networks, 19(2), 186-195. [
DOI:10.1016/j.neunet.2006.01.005]
7. Singh, K. K., Pal, M., Ojha, C. S. P., & Singh, V. P. (2008). Estimation of removal efficiency for settling basins using neural networks and support vector machines. Journal of Hydrologic Engineering, 13(3), 146-155. [
DOI:10.1061/(ASCE)1084-0699(2008)13:3(146)]
8. Akbarinasab, M., & Paeen Afrakoti, I. (2019). Application of Soft Computing in Forecasting wave height (Case study: Anzali). International Journal of Coastal and Offshore Engineering, 3(1), 31-40.
9. Dezvareh, R. (2019). Application of Soft Computing in the Design and Optimization of Tuned Liquid Column-Gas Damper for Use in Offshore Wind Turbines. International Journal of Coastal and Offshore Engineering, 2(4), 47-57. [
DOI:10.29252/ijcoe.2.4.47]
10. Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer-Verlag. [
DOI:10.1007/978-1-4757-2440-0]
11. Vapnik, V. N. (1999). Statistical Learning Theory. John Wiley & Sons, Inc
12. Kraus, N. C., & Dean, J. L. (1987). Longshore sediment transport rate distributions measured by trap. In Coastal sediments (pp. 881-896). ASCE.
13. Kumar, V. S., Anand, N. M., Chandramohan, P., & Naik, G. N. (2003). Longshore sediment transport rate-measurement and estimation, central west coast of India. Coastal Engineering, 48(2), 95-109. [
DOI:10.1016/S0378-3839(02)00172-2]
14. Dezvareh, R., Bargi, K., & Moradi, Y. (2012). Assessment of Wave Diffraction behind the Breakwater Using Mild Slope and Boussinesq Theories. International Journal of Computer Applications in Engineering Sciences, 2(2).
15. Samui, P. (2008). Support vector machine applied to settlement of shallow foundations on cohesionless soils. Computers and Geotechnics, 35(3), 419-427. [
DOI:10.1016/j.compgeo.2007.06.014]
16. Samui, P., Sitharam, T. G., & Kurup, P. U. (2008). OCR prediction using support vector machine based on piezocone data. Journal of Geotechnical and GeoEnvironmental engineering, 134(6), 894-898. [
DOI:10.1061/(ASCE)1090-0241(2008)134:6(894)]
17. Dezvareh, R. (2020). Upgrading the Seismic Capacity of Pile-Supported Wharfs Using Semi-Active Liquid Column Gas Damper. Journal of Applied and Computational Mechanics, 6(1), 112-124.
18. Das, S. K., Samui, P., Sabat, A. K., & Sitharam, T. G. (2010). Prediction of swelling pressure of soil using artificial intelligence techniques. Environmental Earth Sciences, 61(2), 393-403. [
DOI:10.1007/s12665-009-0352-6]
19. Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge university press. [
DOI:10.1017/CBO9780511801389]
20. Dezvareh, R. (2019). Evaluation of turbulence on the dynamics of monopile offshore wind turbine under the wave and wind excitations. Journal of Applied and Computational Mechanics, 5(4), 704-716.
21. Hashemi, M. R., Ghadampour, Z., & Neill, S. P. (2010). Using an artificial neural network to model seasonal changes in beach profiles. Ocean Engineering, 37(14-15), 1345-1356. [
DOI:10.1016/j.oceaneng.2010.07.004]
22. Singh, A. K., Deo, M. C., & Sanil Kumar, V. (2007, September). Neural network-genetic programming for sediment transport. In Proceedings of the Institution of Civil Engineers-Maritime Engineering (Vol. 160, No. 3, pp. 113-119). Thomas Telford Ltd. [
DOI:10.1680/maen.2007.160.3.113]