Volume 4, Issue 3 (Fall 2020)                   ijcoe 2020, 4(3): 35-41 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghorbani A, Khalilabadi M R. Positioning Using Classification and Regression: Case study of Oman Sea. ijcoe. 2020; 4 (3) :35-41
URL: http://ijcoe.org/article-1-222-en.html
1- Department of Computer Science, Shiraz University
2- Faculty of Naval Aviation, Malek Ashtar University of Technology
Abstract:   (264 Views)
In the past few years, the location prediction played a critical role in many applications like intelligent self-learning vehicle, ocean location prediction because of the security and speed issues of GPSs. In this study, we proposed a model for location prediction on Oman’s gulf using a NetCDF Data set. The proposed model is based on classification and regression which means it first mapped the data in a region on Oman’s Gulf using classification and then using regression models to predict a specific location. This progress effect both response time and error of the system. And to the best of our knowledge, no researches are using the same idea. We used multiple classification models for classification tasks (both ensemble models and simple models) and two regression models (linear and XGboost regressor). The result shows reduce of man square error after using classification for regression task. Also, the result and explanation of the data capturing model are provided in the paper.
Full-Text [PDF 630 kb]   (120 Downloads)    
Type of Study: Research | Subject: Offshore Engineering
Received: 2020/11/15 | Accepted: 2021/01/26 | ePublished: 2021/02/20

References
1. Bishop, C.M., Pattern recognition and machine learning. 2006: springer.
2. Mitchell, T.M., J.G. Carbonell, and R.S. Michalski, Machine learning: a guide to current research. Vol. 12. 1986: Springer Science & Business Media. [DOI:10.1007/978-1-4613-2279-5]
3. Bishop, C.M., Neural networks for pattern recognition. 1995: Oxford university press. [DOI:10.1201/9781420050646.ptb6]
4. Dietterich, T.G. Ensemble methods in machine learning. in International workshop on multiple classifier systems. 2000. Springer. [DOI:10.1007/3-540-45014-9_1]
5. Ho, T.K. Random decision forests. in Proceedings of 3rd international conference on document analysis and recognition. 1995. IEEE.
6. Breiman, L., Bagging predictors. Machine learning, 1996. 24(2): p. 123-140. [DOI:10.1007/BF00058655]
7. XGBoost Documentation - xgboost 1.3.0-SNAPSHOT documentation.
8. Ke, G., Q. Meng, and T. Finley, Welcome to LightGBM's documentation. LightGBM.
9. Deng, L. and D. Yu, Deep learning: methods and applications. Foundations and trends in signal processing, 2014. 7(3-4): p. 197-387. [DOI:10.1561/2000000039]
10. Wei, C.-L., et al., Global patterns and predictions of seafloor biomass using random forests. PloS one, 2010. 5(12): p. e15323. [DOI:10.1371/journal.pone.0015323]
11. Li, L., et al., An ensemble classifier for eukaryotic protein subcellular location prediction using gene ontology categories and amino acid hydrophobicity. PLoS One, 2012. 7(1): p. e31057. [DOI:10.1371/journal.pone.0031057]
12. Cadger, F., et al. MANET location prediction using machine learning algorithms. in International Conference on Wired/Wireless Internet Communications. 2012. Springer. [DOI:10.1007/978-3-642-30630-3_15]
13. Stojmenovic, I., M. Russell, and B. Vukojevic. Depth first search and location based localized routing and QoS routing in wireless networks. in Proceedings 2000 International Conference on Parallel Processing. 2000. IEEE.
14. Chen, Q., S.S. Kanhere, and M. Hassan, Adaptive position update for geographic routing in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 2012. 12(3): p. 489-501. [DOI:10.1109/TMC.2012.20]
15. Marshall, J., et al., Hydrostatic, quasi‐hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research: Oceans, 1997. 102(C3): p. 5733-5752. [DOI:10.1029/96JC02776]
16. Adcroft, A., et al. Overview of the formulation and numerics of the MIT GCM. in Proceedings of the ECMWF seminar series on Numerical Methods, Recent developments in numerical methods for atmosphere and ocean modelling. 2004.
17. Hundsdorfer, W., B. Koren, and J. Verwer, A positive finite-difference advection scheme. Journal of computational physics, 1995. 117(1): p. 35-46. [DOI:10.1006/jcph.1995.1042]
18. Pacanowski, R. and S. Philander, Parameterization of vertical mixing in numerical models of tropical oceans. Journal of Physical Oceanography, 1981. 11(11): p. 1443-1451. https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2 [DOI:10.1175/1520-0485(1981)0112.0.CO;2]
19. Leith, C.E., Diffusion approximation for two‐dimensional turbulence. The Physics of Fluids, 1968. 11(3): p. 671-672. [DOI:10.1063/1.1691968]
20. Vlasenko, V., N. Stashchuk, and K. Hutter, Baroclinic tides: theoretical modeling and observational evidence. 2005: Cambridge University Press. [DOI:10.1017/CBO9780511535932]
21. Boyer, T.P., et al., World ocean database 2013. 2013.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2021 CC BY-NC 4.0 | International Journal of Coastal and Offshore Engineering