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The system consisting of two rigid bodies in a viscous fluid is considered. The 

main body with mass M is placed in a viscous incompressible fluid, and the 

body with mass m moves inside the main body. This system is known as 

vibrobot which can be used in arbitrary inspection fluid mechanic objects such 

as oil industries pipes and tanks, as well as marine industries, medicine, etc. In 

this paper, the interaction between the vibrobot and viscous fluid is studied to 

achieve the motion laws of the vibrobot with the harmonic oscillation of 

internal mass. Also the flow structure around vibrobot and its effects on the 

hydrodynamic force acting on the vibrobot are investigated. Analyses are 

carried out by direct numerical simulation of the vibrobot motion in a viscous 

fluid by OpenFOAM package. Calculations are performed for the following 

combinations of control parameters; The ratio of the viscous fluid mass to the 

vibrobot mass μ_1=0.35, the ratio of the internal mass to the vibrobot mass 

μ_2=0.325 and dimensionless oscillation frequency f=1/5, when Reynolds 

number takes values in the range of 50<Re<250. Calculations have been 

performed with different initial approximations, determined by different initial 

velocities of the incident flow. 
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1. Introduction 
In this paper, numerical simulation of two-

dimensional flow around a triangular cylinder 

subjected to a horizontal oscillating motion is 

considered in a viscous incompressible fluid. First of 

all, the history of studying bluff-body subjected to the 

fluid is expressed. 

The liquid flow through a horizontal channel is a 

classical problem in the field of fluid mechanics. 

There are many cases where obstacles are in the path 

of fluid flows. When the flow separation due to an 

obstacle is very large, the obstacle may be classified 

as a bluff-body [1]. 

While a bluff-body in the fluid oscillates, or the body 

is fixed in the oscillating fluid, circulation around the 

body will be formed. Flow field around the bluff-body 

is usually divided into two main regions, i.e., an inner 

boundary layer and an outer flow field [2]. The study 

of two-dimensional oscillatory flow is important in 

the case of wave-induced forces on cylindrical 

structures and is the first step to understanding the 

complex three-dimensional structure of the wave. The 

flow due to loading and vibration of the cylinder in 

the viscous flow have been investigated during the 

recent decades [3]. 

A large number of numerical and experimental 

investigations on flow past variously shaped bodies 

have been accomplished by many researchers [4–8]. 

In contrast to the studies of the flow past a circular, 

square and rectangular cylinder, there are limited 

studies that focus on a triangular cylinder [9].  

Wang et al. [10] experimentally presented a self-

excited rotational oscillation on isolated and tandem 

triangular cylinders. Tatsuno [11] experimentally 

investigated the sample flow in the stable inner 

boundary layer near the triangular cylinder. In 

Tatsuno's paper, an equilateral triangular cylinder is 

used as a test body and oscillated sinusoidally in the 

fluid. 

Numerical simulation of two-dimensional flow around 

a triangular cylinder subjected to a vertical oscillating 

motion in the channel were performed by Alawadhi 

[12]. In works of Jiahuang Tu et al. [13] the problem 

of two-dimensional fluid flow has studied numerically 

past the permanent and rotationally oscillating 

equilateral triangular cylinder with variable angle of 
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the incident, the Reynolds number, oscillating 

amplitude and oscillating frequency. Since the size of 

vibrobot is small, the Reynolds number is low. 

Therefore, flow around vibrobot is in the undetectable 

turbulence mode [14]. Thus, this problem is modeled 

as well as laminar mode. This principle can be used in 

medicine, arbitrary inspection fluid mechanic objects 

[15], etc. 

Although many papers have been published on the 

flow around the different cylinders, lack of 

comprehensive study of triangular cylinders compared 

to round or square cylinders is obvious. Therefore, in 

this paper, a numerical simulation of the motion of the 

vibrobot in a viscous fluid is carried out by the 

OpenFOAM package with a simple harmonic 

oscillation on the triangular cylinder. 

In this paper, a simplified plane setup of flow field 

and rigid body is assumed, that is symmetrical about 

the horizontal axis. The viscous and incompressible 

fluid is directed horizontally and the rigid triangular-

shaped object (presenting one corner to the 

approaching flow and having one edge in the wake 

region) is allowed to move horizontally only. The 

main rigid body experiences (a) an inertia force due to 

the presence of a prescribed harmonic acceleration of 

a second internal mass, and (b) a horizontal force due 

to the presence of an outer fluid field with a certain 

coupling interface stress state. The central aim of the 

research presented in the paper is the characterisation 

and quantification of the induced fluid forces in order 

to determine the resulting locomotion of the object. 

 

Geometrical Arrangement and Mathematical 

Equations  

This section describes the model used for the rigid 

object and the surrounding flow. As the single degree 

of freedom of the object depends on the prescribed 

motion of the internal mass and the produced outer 

flow field, the solution of the Navier-Stokes equations 

is proposed in a moving coordinate system. 

The system consisting of two rigid bodies in a viscous 

fluid is considered. The main body with mass 

𝑀 (corpus) is placed in a viscous incompressible fluid, 

and the body with mass 𝑚 (internal mass) moves 

inside the main body. The triangular obstacle is in the 

middle of the considered zone. The dimensions of this 

zone are selected in a way which reduce boundary 

effects and satisfy the free-stream boundary condition 

and conform with other studies. The ratio of the 

vertical line of obstacle to the height of the channel is 

denoted by 𝑓 which is called blockage ratio. To 

examine the effects of boundaries near obstacle on the 

characteristics of flow, 𝑓 = 0.033 is reported as an 

acceptable value in many studies [1,2]. 

The internal mass interacts with the main body by a 

force which is generated by the actuator. The applied 

force to the internal mass, causes reaction force which 

effects to the main body. Reaction force changes the 

speed of the main body relative to the environment, 

hence resistance force of fluid changes in the opposite 

direction of the main body motion. Thus, adjusting the 

motion of the internal mass relative to the main body 

changes the external force acting on the main body in 

order to controlling the motion of the entire system. It 

is assumed that the internal mass has periodic 

longitudinal motion relative to the corpus which the 

entire system moves as a single assembly. Here, 𝑢𝑀 is 

denoted as the velocity of the corpus, 𝑠 and 𝑧 = 𝑠̇ are 

the motion and speed of the internal mass relative to 

the corpus, respectively that have been shown in 

Figure 1. 
 

 
Figure 1: Schematic of the motion. 

 

The equations of motion of the internal mass and 

corpus in a fixed coordinate system have the 

following form: 
 

𝑚(𝑢̇𝑀 + 𝑧̇) = −𝐺    (1) 

 

𝑀𝑢̇𝑀 = 𝐺 + 𝐹     (2) 

 

Here 𝐹 is the horizontal force which is caused by the 

interaction between oscillating body and incident 

flow, 𝐺 is the interaction force between the internal 

mass and corpus. By eliminating force 𝐺 from 

equations (1) and (2), normalizing the speed by 𝑈0 

(velocity amplitude of the internal mass oscillations), 

normalizing the time by 𝑅𝑈0
−1 (𝑅 is the characteristic 

size of the corpus) and at last normalizing the force by 

𝜌𝑓𝑅𝑈0
2, the basic equation of entire system motion is 

obtained in the following form: 
 

𝑢̇𝑀 = −𝜇2𝑧̇ + 𝜇1(𝑅2 𝑆⁄ )𝐹    (3) 

 

Here 𝜇2 is the ratio of the internal mass (moving 

mass) to the vibrobot mass (𝜇2 = 𝑚 𝑀 + 𝑚⁄ ), 𝜇1 is 

the ratio of the viscous fluid mass (which occupies the 

same volume as the vibrobot) to the vibrobot mass 

(𝜇1 = 𝑀𝑓 𝑀 + 𝑚⁄ ) and 𝑆 is the cross sectional area of 

the corpus. Force 𝐹 is determined by considering the 

motion of the fluid which surrounds the vibrobot.  

The considered model is described by the non-steady 

Navier-Stokes system of equations. By normalizing 

the spatial coordinates, time and speed by 𝑅, 𝑅𝑈0
−1 
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and 𝑈0 , respectively, vector form of the governing 

system of equations is as follows:  
 

𝜕𝑈 𝜕𝑡⁄ + 𝑈. ∇𝑈 = −∇𝑝 + ∆𝑈 𝑅𝑒⁄    (4) 

∇. 𝑈 = 0 

 

Where 𝑈 = (𝑢, 𝑣) is the dimensionless velocity, 𝑝 is 

the dimensionless pressure and 𝑅𝑒 is Reynolds 

number. To solve this system of equations 

numerically, it is convenient to use the moving 

coordinate system associated with the vibrobot. To 

maintain the fluid motion in the form of a new non-

inertial coordinate system, pressure should be defined 

as: 
 

𝑝 = 𝑝 + 𝑥𝜔̇     (5) 

 

Here the first term 𝑝̃ is the pressure in the fixed 

coordinate system, the second term 𝑥𝜔̇ is the 

contribution of the inertial components, 𝜔̇ is the 

acceleration of the moving coordinate system and 𝑥 is 

the dimensionless coordinate. 

In the new coordinate system, on the boundary of the 

vibrobot, non-slip conditions (sticky fluid conditions) 

are defined: 
 

𝑢|𝑐 = 𝑣|𝑐 = 0     (6) 

 

Where 𝑢|𝑐 is tangential velocity on the shell of 

triangular cylinder and 𝑣|𝑐 is normal velocity on the 

shell of triangular cylinder. 

To determine the conditions at infinity, in this case, 

the acceleration of the moving coordinate system is 

written. For this purpose, the coordinate system 

should be switched to the moving coordinate system 

associated with the vibrobot. Hence the acceleration 

of the fixed coordinate system equals to the 

acceleration of the moving coordinate system plus 

acceleration of the coordinate system: 
 

𝑢̇𝑀 = 𝜔̇ + 𝑢̇|𝑐     (7) 

 

Since 𝑢̇|𝑐 = 0 , so 

 

𝜔̇ = −𝜇2𝑧̇ + 𝜇1(𝑅2 𝑆⁄ )𝐹    (8) 

 

At infinity, due to the fact that flow is potential, the 

boundary conditions are defined as follows: 
 

𝑢̇|∞ + 𝜔̇ = 0; 𝑢̇|∞ = −𝜔̇    (9) 

 

𝑢̇|∞ = 𝜇2𝑧̇ − 𝜇1(𝑅2 𝑆⁄ )𝐹   (10) 

 

With the assumption of potential flow at infinity, the 

condition of pressure can be obtained: 
 

𝜕𝑝 𝜕𝑥⁄ |∞ = −𝑢̇|∞ = −𝜇2𝑧̇ + 𝜇1(𝑅2 𝑆⁄ )𝐹  (11) 

 

Calculated forces acting on vibrobot caused by 

viscous fluid in the dimensionless formulation are 

conducted by the following equation: 
 

𝐹𝑝 = ∫ 𝑝𝑛𝑑𝑠
𝑆

− ∫ 𝜎. 𝑛𝑑𝑠
𝑆

    (12) 

 

Where 𝜎̅ is the tensor of viscous stress, 𝑆 is the 

vibrobot cross-sectional area and 𝑛 is the outward 

normal vector to the vibrobot surface. 

Thus, the obtained force vector 𝐹𝑝 can be decomposed 

into the vertical component lift force 𝐹𝑦, and 

horizontal force 𝐹𝑥 which consists of viscous 

resistance and inertial forces [3]. Inertial components 

are caused by acceleration of the fluid and consist of 

two parts; inertial added mass forces due to local 

acceleration near the cylinder and the Froude-Krylov 

forces, which is related with pressure gradient created 

in fluid which is used to simulate oscillating flow. In 

this case, Froude-Krylov forces can be calculated as: 
 

𝐹𝑓𝑘 = ∫ 𝑥𝜔̇
𝑆

𝑛𝑑𝑠     (13) 

 

Taking into account equation (13), the force 𝐹, acting 

on vibrobot in the moving coordinate system is 

calculated as: 
 

𝐹 = 𝐹𝑥 − 𝐹𝑓𝑘     (14) 

 

Hence, the condition of pressure at infinity (equation 

(11)) can be rewritten as: 
 

𝜕𝑝 𝜕𝑥⁄ |∞ = −𝑢̇|∞ = −𝜇2𝑧̇ + 𝜇1(𝑅2 𝑆⁄ )(𝐹𝑥 − 𝐹𝑓𝑘) (15) 

 

The system of equations (4), (14) and (15) completely 

describe the motion of the vibrobot of any form in 

viscous fluid (and motion fluid around vibrobot) for a 

given motion law of the internal mass. 

In the next step, the motion of a vibrobot with 

equilateral triangular cross-section is investigated in 

viscous fluid under harmonic oscillations of the 

internal mass: 
 

𝑧̇ = sin(2𝜋𝑓𝑡)     (16) 

 

Where 𝑓 = 1 𝐾𝐶⁄  is the dimensionless oscillation 

frequency. Here 𝐾𝐶 is Keulegan-Carpenter number 

[4]. 
 

Numerical solution 

Discretization 

This section describes the steps taken in order to solve 

the Navier-Stokes equations using an open-source 

framework (OpenFOAM). 

Discretization of the computational domain is one of 

the solution processes [5]. In this work, block-

structured grids is used which is built by a module in 

OpenFOAM known as blockMesh [6]. In Figure 2 a 

method for dividing the computational domain is 

presented. 
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Figure 2: Division of the computational domain into blocks. 

 

Here for two-dimensional calculations a domain with 

dimensions of 30 × 30 × 1 is used where these values 

respectively point to length, height and width of the 

domain. 

In Table 1 the values of the main parameters of the 

grids is presented. In Table 1; 𝑛 is the total number of 

cells, 𝑁𝑚 is the number of cells on the boundary of the 

cylinder, 𝑉𝑚 is the volume of the smallest cells where 

is located in the boundary of the cylinder and 𝑉𝑚𝑎𝑥 is 

the volume of the smallest cells where is located on 

the vicinity of the outer boundary of the domain. 

Additionally, in this table extremum values of 

indicators skewness 𝑀𝑠, non-orthogonality 𝑀𝑛 and 

uniformity 𝑀𝑢 for utilized grids, which are 

determined in accordance with the documentation of 

OpenFOAM package, are presented. 
 

Table 1: Parameters of the computational grids. 

Parameters n Nm Vm Vmax Mn Ms Mu 

m1 127652 197 1.24 exp.(-

4) 

0.22 30 0.37 0.46 

m2 56734 131 2.8 exp.(-4) 0.5 30 0.37 0.46 

 

In OpenFOAM package, discretization of motion 

equations process is carried out by the finite volume 

method (FVM) in the Cartesian coordinate system. 

For this purpose, discrete values of velocity 

components and discrete values of pressure are 

located in the center of cells [7]. 

To minimize the errors due to the first order 

approximation, the time step (𝜏) in all the 

calculations is chosen from the condition 𝐶𝑚𝑎𝑥 <
0.1. Here, 𝐶𝑚𝑎𝑥

 is the maximum Courant number 

[8]. Courant number in the OpenFOAM package is 

determined by the formula: 

 

𝐶 = (|𝑈𝑃|𝜏) 𝛿⁄      (17) 

 

Where |𝑈𝑃| is the velocity modulus in the cell, 𝛿 is 

the cell size in the direction of the velocity. 
 

Boundary conditions  

At the input and the output boundaries of the domain 

non-reflecting boundary conditions are set as: 
 

{
𝑢 = 𝑢∞;  𝜕𝑝 𝜕𝑥⁄ = −𝑢̇∞;            𝑢0 > 0

𝜕𝑝 𝜕𝑥⁄ = 0;  𝑝 = −𝑢̇∞𝑥;           𝑢0 ≤ 0
  (18) 

𝑣 = 0 

 

They are combined with the conditions of equation 

(15) which are defined on the boundary at infinity. 

Conditions depend on variable 𝑢0, which defines flow 

direction relative to the outward normal vector at the 

boundaries. 

At the top and the bottom boundaries non-slip 

conditions are laid down: 
 

𝜕𝑝 𝜕𝑦⁄ = 0; 𝜕𝑢 𝜕𝑦⁄ = 0;  𝑣 = 0   (19) 

 

At the boundary of the cylinder non-slip conditions 

for the velocity are set: 
 

𝑢 = 𝑣 = 0     (20) 

 

The condition of pressure is: 
 

𝜕𝑝 𝜕𝑛⁄ = 0     (21) 

 

At the front and the back boundaries of the domain 

special "empty" boundary conditions are given which 

are provided in OpenFOAM package in the case of 

non-responding calculations in an arbitrarily given 

direction. Required initial conditions in the entire 

computational domain, utilize the values of velocity 

and pressure corresponding to the undisturbed flow. 
 

Verification 

Due to lack of insufficient quantifications from the 

numerical solutions of triangular cylinders, and 

assuming that OpenFOAM is a mature solver, here in 

Figure 3, the flow pattern obtained by calculations in 

the OpenFOAM package is compared with the 

experimental results reported by Tatsuno [9]. In 

Tatsuno's study, glass micro-particles were suspended 

in a fluid to visualize the fluid flow and he also noted 

that 𝜗 = 0.53 [𝑐𝑚2/s], that 𝜗 is kinematic viscosity. 

The results show that the entire structure of the flow 

obtained from the calculations and from the 

experiment are symmetrical about the axis of 

oscillation and as already seen, these flow patterns 

coincide qualitatively with each other. 
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Figure 3: Flow pattern of a triangular cylinder in viscous fluid for 

𝝊 = 𝟎. 𝟓𝟑 [𝒄𝒎𝟐/𝒔]. a) Experimental result reported by Tatsuno, b) 

Numerical solution using OpenFOAM package in this paper. 

 

Results and Discussion 

This section presents the results on the locomotion in 

a flow at small Reynolds numbers. Calculations have 

been performed for the following combinations of 

control parameters: 𝜇1 = 0.35, 𝜇2 = 0.325, and 𝑓 =
1/5, in the range of 50 < 𝑅𝑒 < 250. Results of 

calculations have been obtained with different initial 

approximations, determined by different initial 

velocities of the incident flow. 

In the studied range, three stable modes of vibrobot 

motion were found. To describe these modes it is 

convenient to introduce the following motion 

characteristics: 𝑈𝑎𝑣𝑒  is the average speed of motion 

and 𝜂 is the performance indicator of motion, 

describing the energy consumption of the body 

motion caused by internal motion. They are defined 

by the following equation: 
 

𝜂 = 𝑁0 𝑁𝑣𝑏𝑟⁄ %     (22) 

 

Here 𝑁0 is the minimum power required to move the 

body with speed 𝑈𝑎𝑣𝑒 (values 𝑁0 for different 𝑅𝑒 

obtained according auxiliary calculations), 𝑁𝑣𝑏𝑟  is the 

consumed power to move the vibrobot with speed 

𝑈𝑎𝑣𝑒. 

Changes in characteristics of vibrobot motion with 

increasing Reynolds number for different modes of 

motion are shown in Figure 4 and Figure 5. In the 

zone of low Reynolds numbers (𝑅𝑒 < 160) unique 

periodic symmetry was observed about the axis of 

oscillation (regime 𝑆), which determines the direction 

of motion of the vibrobot toward the positive direction 

of the 𝑥-axis. Increasing Reynolds number leads to 

increase in the average values of both speed and 

performance indicator of the vibrobot motion. 

For range of Reynolds number greater than 180 two 

new regimes arise; for 180 < 𝑅𝑒 < 210 quasi-

periodic regime 𝐾1 when 𝜗 = 48 [𝑐𝑚2/s] is observed 

and for 𝑅𝑒 > 210 quasi-periodic regime 𝐾2 when 𝜗 =
46 [𝑐𝑚2/s] is observed. 

 
Figure 4: Motion characteristics of vibrobot; Dependence of 

average velocity on Reynolds number. 

 

 
Figure 5: Motion characteristics of vibrobot; Dependence of 

efficiency on Reynolds number. 

 

Moreover, in Figure 6, the flow patterns of different 

quasi-periodic modes are shown for a half period. 

Also schematic of velocity amplitude of the vibrobot 

versus time for regime 𝐾1 when 𝜗 = 48 [𝑐𝑚2/s] is 

displayed in Figure7.  

In Figure 8, velocity amplitude of the vibrobot versus 

time for two different modes with different initial 

conditions are shown. These modes are obtained for 

regime 𝐾2 when 𝜗 = 46 [𝑐𝑚2/s]. It is obvious that 

with different initial conditions, final velocity 

amplitudes are the same. 
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Figure 6: Flow pattern of a triangular cylinder in viscous fluid for a half period quasi-periodic modes. (a,b): Regime 𝑲𝟐 when 𝝊 =

𝟒𝟔 [𝒄𝒎𝟐 𝒔]⁄  (c,d): Regime 𝑲𝟏 when 𝝊 = 𝟒𝟖 [𝒄𝒎𝟐/𝒔]. 

 
Figure 7: Velocity amplitude of the vibrobot versus time for regime 𝑲𝟏 when 𝝊 = 𝟒𝟖 [𝒄𝒎𝟐/𝒔]. 

 

 
Figure 8: Velocity amplitude of the vibrobot versus time for two different initial conditions for regime 𝑲𝟐 when 𝝊 = 𝟒𝟔 [𝒄𝒎𝟐 𝒔]⁄ . 
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Summary and conclusions 

In this paper, a triangular cylinder in a viscous fluid is 

considered which is under harmonic oscillations of the 

internal mass. The following results have been 

obtained: 

1. The selected form for body under a given 

motion law of the internal mass for 𝑓 = 1/5 

(investigated oscillation frequency) allows to provide 

conditions for directional steady motion in a viscous 

fluid in the range of 50 < 𝑅𝑒 < 250. 

2. The direction of motion in most of the studied 

range is determined by the initial conditions, which by 

using that, different steady modes of straight motion 

of vibrobot can be realized, both in the positive 

direction of the 𝑥-axis and toward the negative 

direction of the 𝑥-axis but they have different effects. 

3. Most of the observed flow regimes belong to 

the category of quasi-periodic modes, i.e. the full 

period of the vibrobot is equal to several periods of 

oscillation of the internal mass. Basic periodic flow 

regime turns into quasi-periodic flow regime at 𝑅𝑒 >
180. This is primarily due to the fact that with 

increasing Reynolds number, hydrodynamic force 

distinct the temporal harmonic oscillation from the 

main harmonic oscillation. 

4. Maximum efficiency of motion, for the given 

parameters, does not exceed 1.7%. This value is 

achieved for the quasi-periodic regime K1 for 𝑅𝑒 =
210. At high Reynolds numbers, less efficient modes 

have been observed, which gradually turn into 

chaotic. 

All these results provide a basis for understanding 

the interaction between vibrobot and viscous fluid and 

it is a platform for studying more complex laws of 

motion in order to maximize the effectiveness of such 

devices. 
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