Volume 2, Issue 1 (6-2018)                   ijcoe 2018, 2(1): 59-66 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hadizadeh Asar T, Sadeghi K, Emami A. Free Vibration Analysis of Very Large Rectangular Floating Structures. ijcoe. 2018; 2 (1) :59-66
URL: http://ijcoe.org/article-1-105-en.html
1- Engineering Department, University of Hormozgan
2- Buein Zahra Technical University
3- Civil Engineering Department, Sahand University of Technology
Abstract:   (2228 Views)
The dynamic behavior of a very large rectangular floating structure is considered. The structure is modelled as a plate with free edges. Two different thicknesses are considered for the model. The Mindlin plate theory is used to formulate the structure behavior. Natural frequencies, mode shapes, and stress resultants of the structure are predicted by using finite element method. For this purpose, a MATLAB code is written. The same analysis is performed by using the ANSYS software. The results of these two analysis are compared with each other and with the available results in the literature, where close agreement is observed. Therefore, the written finite element code is found to be acceptable for prediction of the dynamic behavior of very large rectangular floating structures in early stages of design.
Full-Text [PDF 1026 kb]   (1029 Downloads)    
Type of Study: Research | Subject: Offshore Engineering
Received: 2018/05/29 | Accepted: 2018/06/9 | ePublished: 2018/08/18

1. Watanabe, E., Utsunomiya, T., and Wang, C.M., (2004), Hydroelastic analysis of pontoon-type VLFS: a literature survey, Engineering Structures Vol. 26, pp. 245-256. [DOI:10.1016/j.engstruct.2003.10.001]
2. Utsunomiya, T., (2008) in Very Large Floating Structures, Edited by Wang, C.M., Watanabe, E., and Utsunomya, T., Taylor & Francis.
3. Liew, K. M., Han, J. B., (1995), Differential quadrature method for Mindlin plates on Winkler foundations, International Journal of Mechanical Science. Vol. 38, pp. 405-421. [DOI:10.1016/0020-7403(95)00062-3]
4. Xiang, Y., (1995), Vibration analysis of rectangular Mindlin plates resting on elastic edge supports, Journal of Sound and Vibration, Vol. 204, pp. 1-16. [DOI:10.1006/jsvi.1996.0922]
5. Rossi, R. E., and Bambill, D. V., (1997). Vibrations of a rectangular orthotropic plate with a free edge: A comparison of analytical and numerical results, Ocean Engineering, pp. 521–527.
6. Wang, C. M., Xiang, Y., Utsunomiya, T., Watanabe, E., (2000), Evaluation of modal stress resultants in freely vibrating plates, International Journal of Solids and Structures, Vol. 38, pp. 6525-6558. [DOI:10.1016/S0020-7683(01)00040-3]
7. Beirao, L., and Veiga, da., (2005), Finite element methods for a modified Reissner–Mindlin free plate model, SIAM Journal on numerical analysis Vol. 42, pp. 1572–1591,
8. Wang, C. M., Wu, W. X., Sha, C., Utsanomiya, T., (2006), LSFD method for accurate vibration modes and modal stress–resultants of freely vibrating plates that model VLFS, Computers and Structures, pp. 2329–2339. [DOI:10.1016/j.compstruc.2006.08.055]
9. Wu, W. X., Shu, C., Wang, C. M., (2006), Computation of modal stress resultants for completely free vibrating plates by LSFD method, Journal of Sound and Vibration, Vol. 297, pp. 704-726. [DOI:10.1016/j.jsv.2006.04.019]
10. Ma, Y. Q., Ang, K. K., (2006), Free vibration of Mindlin plates based on the relative displacement plate element, Finite Element in Analysis and Design. Vol. 42, pp. 929-1030. [DOI:10.1016/j.finel.2006.03.001]
11. Sadrnejad, S. A., Saedi Daryan, A., (2009) Vibration equation of thick rectangular plates using Mindlin plate theory, Journal of Computer Science. Vol. 5, pp. 838-842. [DOI:10.3844/jcssp.2009.838.842]
12. Xiang, Y., Lai, S.k., and Zhou, L., (2010), DSC-element method for free vibration analysis of rectangular Mindlin plates, International Journal of Mechanical Sciences Vol. 52, pp. 548-560. [DOI:10.1016/j.ijmecsci.2009.12.001]
13. Xiang, Y., Lai, S.k., and Zhou, L., Lim, C.W., (2010), DSC-Ritz element method for vibration analysis of rectangular Mindlin plates with mixed edge supports  European Journal of Mechanics, Vol. 24, pp. 619-628.
14. Hosseini-Hashemi, Sh., Rokni Damavandi Taher., Akhavan, H., and Omidi, M., (2010), Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory, Applied Mathematical Modelling Vol. 34, pp. 1276-1261. [DOI:10.1016/j.apm.2009.08.008]
15. Hosseini-Hashemi, Sh., Fadaee, M., and Atashipour, S.R., (2011), A new exact analytical approach for free vibration of Reissner-Mindlin Functionally graded rectangular plates. International Journal of Mechanical Sciences Vol. 53, pp. 11-22. [DOI:10.1016/j.ijmecsci.2010.10.002]
16. Hosseini-Hashemi, Sh., Fadaee, M., and Rokni Damavandi Taher, H., (2011), Exact solution for free flexural vibration of Levy–type rectangular thick plates via third-order shear deformation plate theory. Applied Mathematical Modelling Vol. 35, pp. 708-727. [DOI:10.1016/j.apm.2010.07.028]
17. Ramu, I., and Mohanty, S.C., (2012). Study on free vibration analysis of rectangular plate structures using finite element method, Procedia Engineering Vol. 38, pp. 2758-2766. [DOI:10.1016/j.proeng.2012.06.323]
18. Pereira, W.l.a., Karam, V.J., Carrer, J.A.M., and Mansur, W.J., (2012), A dynamic formulation for the analysis of thick elastic plates by the boundary element method. Engineering Analysis with Boundary Elements, Vol. 36, pp.1138–1150. [DOI:10.1016/j.enganabound.2012.02.002]
19. Eftekhari, S.A., and Jafari, A.A., (2013). Modified mixed Ritz-DQ formulation for free vibration of thick rectangular and skew plates with general boundary conditions, Applied Mathematical Modelling Vol. 37, pp. 7398-7426. [DOI:10.1016/j.apm.2013.02.040]
20. Cho, D.S., Vladimir, N., and Choi, T.M., (2013), Approximate natural vibration analysis of rectangular plates with opening using assumed mode method. Int. J. Naval Archit. Ocean Eng. Vol. 5, pp. 478-491. [DOI:10.2478/IJNAOE-2013-0147]
21. Thai, H.T., and Choi, D.H., (2013), Analytical solutions of refined plate theory for bending bucking and vibration analyses of thick plates, Applied Mathematical Modelling Vol. 37, pp. 8310-8323. [DOI:10.1016/j.apm.2013.03.038]
22. Senjanovic, I., Vladimir, N., and Hadzic, N., (2015), Modified Mindlin plate theory and shear locking–free finite element formulation, Mechanics Research Communication Vol. 55, pp. 95-104. [DOI:10.1016/j.mechrescom.2013.10.007]
23. Praveen, K.M., Karmakar, D., and Nasar, T., (2016), Hydroelastic analysis of floating elastic thick plate in shallow water depth, Perspectives in Science Vol. 8, pp. 770-772. [DOI:10.1016/j.pisc.2016.06.084]
24. Senjanovic, I., Tomic, M., Hadzic, N., and Vladimir, N., (2017), Dynamic finite element formulations for moderately thick plate vibtations based on the modified Mindlin theory, Engineering Structures Vol. 139, pp. 100-113. [DOI:10.1016/j.engstruct.2017.01.021]
25. Khezri, M., Gharib, M., and Rasmusse, K.J.R., (2018), A unified approach to meshless analysis of thin to moderately thick plates based on a shear-locking-free Mindlin theory formulation, Thin-Walled Structures Vol. 124, pp. 161-179. [DOI:10.1016/j.tws.2017.12.004]
26. Shirkol, A.I., and Nasar, T., (2018), Coupled boundary element method and finite element method for hydroelastic analysis of floating plate. Journal of Ocean Engineering and Science Vol. 3, pp.19-37. [DOI:10.1016/j.joes.2017.11.003]
27. Wikipedia, (2018), Very Large Floating Structures, http://en.wikipedia.org/wiki/very_large_floating_structures

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | International Journal of Coastal and Offshore Engineering